军考数学•每天一练

学习过程是一个递进的过程,不管是知识的深度还是广度,只有一个台阶一个台阶地向上 攀登才能达到更高的境界,如果由最初的第一台阶就想跃到最高的台阶,不管怎么跳跃都是不 可能实现的。

理科的学习注重的是公式或定理的应用和解题思维的培养,如果只是对公式或定理熟练记 忆而没有练习的过程,理科的学习就是徒劳的。

如果说利用崔爱功《军考突破》学通各章节知识点是必备的第一步,那么第二步不可缺少 的就是利用对应的有针对性的练习题结合军考突破做题训练;多年经验告诉我们,战士考生复 习过程中在记住公式和定理的同时,更为重要的就是对知识点的反复应用,在练习的过程中加 深记忆和理解、培养解题思维、总结解题方法;只有这样,在应用过程中才能形成整个知识体 系,从而达到前后贯通、应用自如。

《军考数学·每天一练》按照每天一训练的要求编写了对应的练习题,这样编写的目的是 让战士考生清楚地知道每天学什么、练哪些,循序渐进、日进一寸;难度从低到高编写有梯度 的习题,目的是让战士考生按部就班地夯实基础、提升能力。

崔爱功军考数学《每天一练》与崔爱功《军考突破》相辅相成,战士考生利用《军考突破》 来学通各章节知识点,利用《数学每天一练》巩固和运用对应所学知识点考点,定能达到的深 入的理解和熟练的应用。

本册资料适用于优秀消防员战士考生;本资料分为了58天,学习完之后建议用《崔爱功军 考模拟题》和《崔爱功军考考前冲刺卷》来做综合测试以及查漏补缺,该套资料检验综合能力, 锻炼应试技能,确保颗粒归仓。

目 录

第-	一章 集合	与简易逻辑
	第 01 天	集合的运算
	第 02 天	逻辑与充要条件
	第 03 天	集合经典例题
第二	二章 函	数
	第 04 天	函数概念(定义域、对应律、值域、分段函数)10
	第 05 天	函数性质(单调性、奇偶性、反函数)
	第 06 天	二次函数
	第 07 天	指数函数
	第 08 天	对数函数15
	第 09 天	函数经典例题(1)16
	第10天	函数经典例题(2)
第三	三章 数	列33
	第11天	等差数列 (1)
	第 12 天	等差数列(2)
	第13天	等比数列(1)
	第 14 天	等比数列 (2)
	第15天	递推、求和
	第16天	数列经典例题
第四	四章 不等	云
	第 17 天	不等式的概念与性质
	第18天	均值不等式
	第 19 天	一元二次不等式的解法
	第 20 天	分式不等式的解法
	第 21 天	指数、对数不等式的解法
	第 22 天	绝对值不等式
第3	丘章 排列	J、组合二项式定理 ·······69
	第 23 天	排列组合综合应用
	第 24 天	排列组合的典型例题(1)
	第 25 天	排列组合的典型例题(2)70
	第26天	二项式定理
第7	六章 统计	·初步······78
	第 27 天	随机抽样
	第 28 天	用样本估计总体

第七章	概	率	8
第	29 天	互斥事件的概率	8
第	30 天	古典概型和几何概型	9
第	31 天	相互独立事件和独立重复试验	1
第八章	三角	自函数	0
第	32 天	三角函数的定义与公式(1)	0
第	33 天	三角函数定义与公式(2)	2
第	34 天	三角函数的图象和性质	
第	35 天	三角函数的典型例题	4
第	36 天	解三角形典型例题(1)	5
第	37 天	解三角形典型例题(2)	6
第九章	平面	前向量	1
第	38天	平面向量的线性运算	1
第	39 天	平面向量的数量积	2
第	40 天	向量的典型例题(1)	3
第	41 天	向量的典型例题(2)	4
第十章	直线	和圆的方程	2
第	42 天	直线的方程	
第	43 天	两条直线的位置关系	2
第	44 天	圆的方程	3
第	45 天	直线和圆的方程	4
第	46 天	直线与圆经典例题	5
第十一	童圆	【锥曲线与方程	5
第	47 天	椭圆的方程	5
第	48 天	椭圆的性质	6
第	49 天	双曲线的方程与性质	7
第	50 天	抛物线的方程与性质	7
第	51 天	圆锥曲线经典例题(1)	8
第	52 天	圆锥曲线经典例题(2)	9
第十二	章 立	工体几何	8
第	53 天	直线和平面平行、平面和平面平行	8
第	54 天		
第	55 天		
第	56天	球(表面积、体积)	3
第	57 天	立体几何经典例题(1)	4
第	58 天	立体几何经典例题(2)	5

第一章 集合与简易逻辑

第01天 集合的运算

1. 如果集合 $A = \{x \mid x \le \sqrt{3}\}, a = \sqrt{2}, 那么($) B. $\{a\} \subset A$ A. $a \notin A$ C. $\{a\} \in A$ D. $a \subset A$ 2. 已知集合 $A = \{x | x > 0\}$, $B = \{x | -1 \le x \le 2\}$, 则 $A \cup B$ 等于 () B. $\{x \mid x \le 2\}$ C. $\{x \mid 0 < x \le 2\}$ D. $\{x \mid -1 \le x \le 2\}$ A. $\{x \mid x \ge -1\}$ 3. 已知全集 $U = \{0, 1, 2, 3, 4\}$, 集合 $A = \{1, 2, 3\}$, $B = \{2, 4\}$, 则($C_U A$) $\bigcup B$ 为() A. {1, 2, 4} B. $\{2, 3, 4\}$ C. $\{0, 2, 4\}$ D. $\{0, 2, 3, 4\}$ 4. 已知全集*U* = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 集合*A* = {0, 1, 3, 5, 8}, 集合 $B = \{2, 4, 5, 6, 8\}, \quad (\Box_{I}A) \cap (\Box_{I}B) = (\Box_{I}A) \cap (\Box_{I}B) = (\Box_{I}A) \cap (\Box_{I}B) = (\Box_{I}A) \cap (\Box_{I}B) = (\Box_{I}A) \cap (\Box_{I}B) \cap (\Box_{I}B) = (\Box_{I}A) \cap (\Box_{I}B) \cap (\Box_{I}B)$) B. {7, 9} C. {0, 1, 3} A. {5, 8} D. $\{2, 4, 6\}$ 5. 已知集合 $M = \{(x, y) | x+y=2\}, N = \{(x, y) | x-y=4\}, 那_{*}$ 么集合 $M \cap N$ 为() A. x = 3, y = -1B. $\{(x, y) | x = 3 \text{ gv} = -1\}$ D. $\{(3, -1)\}$ C. (3, -1) 6. 设全集 $U = \mathbf{R}$,集合 $A = \{x | x \le 1, \text{ 或 } x \ge 3\}$,集合 $B = \{x | k < x < k+1, k \in \mathbf{R}\}$,且 $B \cap (C_U A) \neq \emptyset$, 则 () A. k < 0 或 k > 3B. 2 < *k* < 3 C. 0 < k < 3D. -1 < k < 37. $若 A = \{1, 4, x\}, B = \{1, x^2\}, 且 A \cap B = B, 则 x 的值为($ A. 2 或 –2 B. 0 或 –2 C. 0 或 2 D. 0、 8. 设集合 $A = \{x | x^2 - x = 0\}$, $B = \{x | x^2 + x = 0\}$, 则集合 $A \cap B$ 的运算结果为 (D. 0、2或-2) 次的款线: C.Ø D. $\{-1, 0, 1\}$ A. 0 9. 设 $S = \{x | 2x + 1 > 0\}$, $T = \{x | 3x - 5 < 0\}$, 则 $S \cap T$ 等于() B. $\{x \mid x < -\frac{1}{2}\}$ C. $\{x \mid x > \frac{5}{3}\}$ D. $\{x \mid -\frac{1}{2} < x < \frac{5}{3}\}$ A. Ø 10. 集合 $P = \{x \mid x \neq 1, x \in \mathbf{R}\}, Q = (-\infty, 1) \cup (1, 2) \cup (2, +\infty), 则 P \cup Q$ () B. *P* C. **R** D. 无法判定 A. Q 11. 设集合 $A = \{x \mid -1 < x < 1\}$, $B = \{x \mid -1, 0, 1, 2\}$, $M \land A \cap B = ($)

A. $\{0, 1\}$ B. $\{-1, 0\}$	C. {0} D. {-1, 0, 1}
12. 方程 $x^2 + 2x = 0$ 的解集是 ()	
A. $\{0, 2\}$ B. $\{0, -2\}$	C. {2} D. {-2}
13. 设集合 $P = \{x \mid x^2 + x - 30 = 0\}$, 集合 $T = \{x \mid x^2 + x - 30 = 0\}$	$nx+3=0$ }, 且 $T \subseteq P$, 则 m 的值组成的集合是
·	
14. 设集合 $A = \{x \mid x^2 \le 4\}$, $B = \{x \mid x - m < 0\}$.	<i>若 4 ⊂ B</i> . 则 字数 <i>m</i> 的 取 值 范 围 是
15. " $ f(-x) = f(x) $ "是" $f(x)$ 为偶函数"的	
	B. 必要不充分条件
	D. 既不充分也不必要条件
16. 己知集合 $A = \{x \mid a - 1 \le x \le a + 1\}$, $B = \{x \mid 2x \le a + 1\}$, $B = \{x \mid 2x \le a + 1\}$, $B = \{x \mid x \in a + 1\}$,	$(-7) \ge 11$. 者 $A B = \emptyset$,则实数 a 的取值泡
围是	
第 02 天 逻辑	↓ 与充要条件
1. 设 <i>x</i> ∈ R , 则 " <i>x</i> > $\frac{1}{2}$ " 是 "2 <i>x</i> ² + <i>x</i> − 1 > 0"	的()
A. 充分不必要条件	B. 必要不充分条件
C. 充要条件	D. 既不充分也不必要条件
2. 设 $a \in \mathbf{R}$,则" $a = 1$ "是"直线 $l_1: ax + 2y - 1$	$=0$ 与直线 $l_2:x+2y+4=0$ 平行"的()
A. 充分不必要条件	B. 必要不充分条件
C. 充分必要条件	D. 既不充分也不必要条件
3. 设命题甲: $ax^2 + 2ax + 1 > 0$ 的解集是实数集	、 ,命题乙: <i>a</i> =0,则命题甲是命题乙成立的
()	
A. 充分不必要条件	B. 充要条件
C. 必要不充分条件	
4. 已知 α , β 是不同的两个平面, 直线 $a \subset \alpha$,	直线 $b ⊂ \beta$. 命题 $p:a 与 b$ 无公共点; 命题
$q:\alpha//\beta$,则p是q的()	AU. SC
A. 充分不必要条件	B. 必要不充分条件
C. 允要条件	D. 既不充分也不必要条件
 q: α//β,则p是q的() A. 充分不必要条件 C. 充要条件 5. 若a, b为实数,则"O<ab<1"是"b<1 a"<="" li=""> </ab<1"是"b<1>	'的()
a A. 充分不必要条件	B. 必要不充分条件
C. 充分必要条件	D. 既不充分也不必要条件
6. 已知不等式 $x+3 \ge 0$ 的解集是 A ,则使得 $a \in$	
	C. $a \le -3$ D. $a < -3$
7. 设命题 p : 函数 $y = \sin 2x$ 的最小正周期为 $\frac{\pi}{2}$:	; 命题 q : 函数 $y = \cos x$ 的图象关于直线 $x = \frac{\pi}{2}$
对称.则下列判断正确的是())	

A.
$$p$$
为真 B. $非 q$ 为假 C. $p \land q$ 为假 D. $p \lor q$ 为真
8. $p:\frac{1}{x-3} < 0, q:x^2 - 4x - 5 < 0, 若 p \perp q$ 为假命题,则 x 的取值范围是_____.

9. 已知命题 p:关于 x 的不等式 x² + 2ax + 4 > 0 对一切 x ∈ R 恒成立; q:函数 f(x) = -(5-2a)^x
 是减函数,若 p∨q为真, p∧q为假,求实数 a 的取值范围.

第03天 集合经典例题

1. 已知集合 *P* = {*x* | *x*(*x*−1)≥0, *x*∈**R**}, *Q* = {*x* | $\frac{1}{x-1}$ >0, *x*∈**R**}, 则 *P*∩*Q* 等于 (A. Ø B. $\{x \mid x \ge 1, x \in \mathbf{R}\}$ C. $\{x \mid x > 1, x \in \mathbf{R}\}$ D. {*x* | *x* ≥ 1 \exists *x* < 0, *x* ∈ **R**} 2. $\forall \alpha, \beta \in (-\frac{\pi}{2}, \frac{\pi}{2}), \exists \alpha < \beta \ a < \beta \ a < \tan \alpha < \tan \beta \ b \ ($ A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 3. 设**R** 为实数集, \overline{A} 为全体正实数的集合, $B = \{-2, -1, 1, 2\}$, 则下列结论正确的是() B. $(\int_{\mathbf{p}} A) \bigcup B = (-\infty, 0)$ A. $A \cap B = \{-2, -1\}$ C. $A \bigcup B = (0, +\infty)$ D. $(\Box_{\mathbf{R}} A) \cap B = \{-2, -1\}$ 4. 条件 p:|x|=x, 条件 $q:x^2 \ge -x$, 则 $p \ge q$ 的 () A. 充分不必要条件 B. 必要不充分 C. 充要条件 D. 既不充分也不必要条件 5. 若集合 $A = \{x \mid -2 \le x \le 3\}$, $Q = \{x \mid x < -1 \neq x > 4\}$, $M \land A \cap B = ($) A. $\{x \mid x \le 3 \text{ if } x > 4\}$ B. $\{x \mid -1 < x \le 3\}$ C. $\{x \mid 3 \le x < 4\}$ D. $\{x \mid -2 \le x < -1\}$ 6. a < 0 是方程 $ax^2 + 2x + 1 = 0$ 至少有一个负根的(C. 充分必要条件 WWW JUNK B. 充分不必要条件 C. 允分必要条件 D. 既不充分也不必要条件 7. 设全集 $U=\{x \in \mathbb{Z} | 0 \le x \le 5\}$,集合 $A=\{1, 3\}$, $B=\{y | y = \log_{\sqrt{3}} x, x \in A\}$,则集合 $(\mathbf{c}, A) \cap (\mathbf{c}, B) = (\mathbf{c}, B) = \mathbf{c}$ A. $\{0, 2, 4, 5\}$ B. $\{0, 4, 5\}$ C. {2, 4, 5} D. {4, 5} 8. 设a、b都是实数,则" $lg(a^2+1) < lg(b^2+1)$ "是"a < b"的() B. 充分不必要条件 A. 充要条件 C. 必要不充分条件 D. 既不充分也不必要条件 9. 已知 A • B • C ≠ 0,则"A、B、C 三者符号相同"是"方程 Ax² + By² = C 表示椭圆"的() A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件 - 3 -

10. 己知集合 $P = \{-1, 0, 1\}, Q = \{x \mid x = ab, a\}$, $b \in P \square a \neq b$ }, 则 $P \cup Q$ 等于 ()
A. $\{0, 1\}$ B. $\{-1, 0\}$	C. $\{-1, 0, 1\}$ D. $\{-1, 1\}$
11. " $x_1 > 2 \coprod x_2 > 2$ " \nexists " $x_1 + x_2 > 4 \coprod x_1 x_2 > 4$	"的()
A. 充分不必要条件	B. 必要不充分条件
C. 充要条件	D. 既不充分也不必要
12. 设集合 $P = \{5, \log_2(a+3)\}$, 集合 $Q = \{a, b\}$	}, 若 $P \cap Q = \{2\}$, 则 $P \cup Q = ()$
A. $\{1, 2, 4\}$ B. $\{1, 2, 5\}$	C. $\{1, 2, 3\}$ D. $\{2, 3, 5\}$
13. " $k = h$ "是"直线 $y = x + 2$ 与圆 $(x - k)^2 + (y)$	$(-h)^2 = 2$ 相切"的 ()
A. 充分不必要条件	B. 必要不充分条件
C. 充要条件	D. 既不充分又不必要条件
14. 己知集合 $A = \{x \in \mathbb{R} \mid x < 2\}$, $B = \{x \in \mathbb{R} \mid \frac{1}{2} < $	$2^x < 5$ }, 则 A ∩ B = ()
A. $\{x \in \mathbf{R} \mid -2 < x < 2\}$	B. $\{x \in \mathbf{R} \mid -1 < x < 2\}$
C. $\{x \in \mathbf{R} \mid -2 < x < \log_2 5\}$	D. $\{x \in \mathbf{R} \mid -1 < x < \log_2 5\}$
15. 己知集合 $A = \{1, a\}, B = \{1, 2, 3\}, 则 "a$	$=3$ "是" $A \subseteq B$ "的()
A. 充分不必要条件	B. 必要不充分条件
C. 充分必要条件	D. 既不充分也不必要条件

WWW.JUNKAO.COM 咨询热线: 13810115611

第一章 集合与简易逻辑

第01天 集合的运算

1.【答案】B

【详解】 $a = \sqrt{2} < \sqrt{3}$, $\therefore a \in A$, A 错误, 由元素与集合之间的关系及集合与集合之间的关 系可知, C、D 错, B 正确.

2.【答案】A

【**详解**】画出数轴表示如图, *A*UB 如阴影部分所示.

3.【答案】C

【详解】 ($C_U A$) = {0, 4}, 所以 ($C_U A$) $\bigcup B$ = {0, 4} \bigcup {2, 4} = {0, 2, 4}.

- 4.【答案】B 【详解】根据集合运算的性质求解.因为AUB={0,1,2,3,4,5,6,8},所以 $(\Box_{A}A) \cap (\Box_{B}B) = \Box_{A}(A \cup B) = \{7, 9\}.$
- 5.【答案】D

【详解】
$$M \cap N = \left\{ (x, y) \begin{cases} x + y = 2 \\ x - y = 4 \end{cases} = \left\{ (x, y) | \begin{cases} x = 3 \\ y = -1 \end{cases} = \{ (3, -1) \}. \right\}$$

6.【答案】C

【详解】 $C_{UA} = \{x | 1 < x < 3\}$,借助于数轴可得 $\begin{cases} k+1>1 \\ k<3 \end{cases}$: 0 < k < 3. 【答案】 D 【详解】 由 $A \cap B = B$,得 $B \subseteq A$, 则 $x^2 = 4$ 或 $x^2 = x$, 且 $x \neq 1$. 【点评】考查集合与集合的关系. 7.【答案】D

- 8.【答案】B 【详解】 $A = \{0, 1\}, B = \{-1, 0\}.$
 - 【点评】考查集合的交集运算.
- 9.【答案】D

【详解】 ::
$$S = \{x \mid 2x+1 > 0\} = \{x \mid x > -\frac{1}{2}\}$$
, $T = \{x \mid 3x-5 < 0\} = \{x \mid x < \frac{5}{3}\}$,
:: $S \cap T = \{x \mid -\frac{1}{2} < x < \frac{5}{3}\}$.
【点评】考查集合的交集运算.

10.【答案】B 【详解】 $Q \subset P \Leftrightarrow P \cup Q = P$. 【点评】考查集合的并集运算. 11.【答案】C 【**详解**】 $A \cap B = \{0\}$, 交集取公共元素. 【点评】考查集合的基本运算. 12.【答案】B 【**详解**】:: $x^2 + 2x = x(x+2) = 0$, :: x = 0 或 x = -2. :: 解集为 {0, -2}. 【点评】考查集合的表示法. 13.【答案】 $\{0, \frac{1}{2}, -\frac{3}{5}\}$ 【详解】 $P = \{x \mid x^2 + x - 30 = 0\} = \{-6, 5\}; T = \{x \mid mx + 3 = 0\}, 且 T \subset P$ 所以m=0或 $-\frac{3}{m}=-6$ 或 $-\frac{3}{m}=5$ ⇔m=0或 $m=\frac{1}{2}$ 或 $m=-\frac{3}{5}$. 【点评】本题考查子集的概念,注意到空集是任意集合的子集. 14.【答案】(2,+∞) 【详解】 $A = \{x \mid -2 \le x \le 2\}$, $B = \{x \mid x < m\}$. 若 $A \subseteq B$, 则 m > 2. 【点评】本题考查集合的子集概念. 15.【答案】B 【详解】 $|f(-x)| = |f(x)| \Leftrightarrow f(-x) = f(x)$ 或 f(-x) = -f(x). f(x)为偶函数 $\Leftrightarrow f(-x)=f(x)$ 所以"|f(-x)| = |f(x)|"是"f(x)为偶函数"的必要不充分条件. 16.【答案】(-1,8) . . .

【详解】
$$B = \{x \mid | 2x-7 \mid \ge 11\} = \{x \mid x \le -2 \text{ or } x \ge 9\}$$

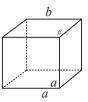
若 $A \cap B = \emptyset$, 则 $\begin{cases} a+1 \ge -2 \\ a+1 < 9 \end{cases} \Leftrightarrow \begin{cases} a \ge -1 \\ a \le 8 \end{cases} \Leftrightarrow -1 \le a < 8.$ 56

第02天 逻辑与充要条件

1.【答案】A

【详解】由 $2x^2 + x - 1 > 0$,可得 x < -1 或 $x > \frac{1}{2}$, :: " $x > \frac{1}{2}$ " 是 " $2x^2 + x - 1 > 0$ "的充分不必要条件.

2.【答案】C


【详解】l, 与 l,平行的充要条件为 $a \times 2 = 2 \times 1$ 且 $a \times 4 \neq -1 \times 1$, 得a = 1.

【答案】C
 【详解】若 ax²+2ax+1>0 的解集为R,

则
$$a = 0$$
 或 $\begin{cases} a > 0 \\ \Delta < 0 \end{cases}$ $\Leftrightarrow a = 0$ 或 $\begin{cases} a > 0 \\ 4a^2 - 4a < 0 \end{cases}$ $\Leftrightarrow a = 0$ 或 $0 < a < 1$ $\therefore 0 \le a < 1$.

因此乙⇒甲,但甲⇒乙.:命题甲是命题乙成立的必要不充分条件.

4.【答案】B

【**详解**】如图,正方体中的*a*,*b*无公共点,但 α , β 相交.反之,显然 $\alpha //\beta \Rightarrow a = b$ 无公共点.

5.【答案】D

【详解】当0<*ab*<1,*a*<0,*b*<0时,有*b*> $\frac{1}{a}$;反过来,*b*< $\frac{1}{a}$,当*a*<0时,有*ab*>1.

∴ "0 < ab < 1" 是 " $b < \frac{1}{a}$ "的既不充分也不必要条件.

6.【答案】D

【详解】 $\therefore x+3 \ge 0$, $\therefore A = \{x \mid x \ge -3\}$. 又 $\therefore a \in A$ 是假命题, 即 $a \notin A$, $\therefore a < -3$.

7.【答案】C

【详解】因周期 $T = \frac{2\pi}{2} = \pi$,故p为假命题.

因 cos *x* 的对称轴为 $x = k\pi (k \in \mathbb{Z})$, 故 *q* 也为假命题,所以 $p \land q$ 为假.

- 8.【答案】(-∞, -1]U[3, +∞)
 【详解】p:x<3, q:+1<x<5.
 : p∧q为假命题, ∴ p, q中至少有一个为假8:x≥3或x≤-1
- 9.【详解】设 $g(x) = x^2 + 2ax + 4$. 由于关于 x 的不等式 $x^2 + 2ax + 4 > 0$ 对一切 $x \in \mathbb{R}$ 恒成立,

: 函数 g(x) 的图象开口向上且与 x 轴没有交点, 故 $\Delta = 4a^2 - 16 < 0$.

∴ -2 < a < 2, ∴命题 p:-2 < a < 2. ∵函数 $f(x) = -(5-2a)^x$ 是减函数, 则有 5-2a > 1, 即 a < 2, ∴命题 q:a < 2. 又由于 $p \lor q$ 为真, $p \land q$ 为假, 可知 p和 q 一真一假.

(1) $\exists p \neq q \in \mathbb{R}$, $\mathbb{M} \begin{cases} -2 < a < 2 \\ a \ge 2 \end{cases}$ 此不等式组无解. (2) $\exists p \boxtimes q \inf, \mathbb{M} \begin{cases} a \leq -2 \exists a \geq 2 \\ a < 2 \end{cases} : a \leq -2.$ 综上可知,所求实数 a 的取值范围是 { $a \mid a \leq -2$ }.

第03天 集合经典例题

1.【答案】C

【详解】由 $x(x-1) \ge 0$,得 $x \ge 1$ 或 $x \le 0$;由 $\frac{1}{x-1} > 0$,得x > 1,即 $Q \subseteq P$,

P∩*Q* = *Q* = {*x* | *x* > 1, *x* ∈ **R**}.

【点评】本题考查解不等式和集合的运算.

2.【答案】C

【详解】函数 $y = \tan x \, \alpha < \Box \square \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ 上是增函数, $\alpha < \beta \Leftrightarrow \tan \alpha < \tan \beta$.

【点评】本题考查的是正切函数的单调性以及充要条件的判定.

3.【答案】D

【详解】 ∴ $A = \{x \mid x > 0\}$, $C_{p}A = \{x \mid x \le 0\}$, ∴ $(C_{p}A) \cap B = \{-2, -1\}$.

【点评】本题考查集合的交、并、补运算.

4.【答案】A

【详解】 $p: |x| = x \Leftrightarrow x \ge 0; \quad q: x^2 \ge -x \Leftrightarrow x \ge 0$ 或 $x \le -1, \therefore p \Rightarrow q, \quad q \Rightarrow p.$

【点评】本题涉及不等式的化简,重点考查充要条件的判定.

5.【答案】D

【**点评**】本题考查集合的交集运算. 【答案】B

6.【答案】B

【详解】a < 0时,用根与系数的关系定理可知方程 $ax^2 + 2x + 1 = 0$ 有一个负根,一个正根.a = 0时,方程 $ax^2 + 2x + 1 = 0$ 有一个负根 $x = -\frac{1}{2}$.这就表明a < 0是方程 $ax^2 + 2x + 1 = 0$ 有一个负 根的充分非必要条件.

【点评】要注意考虑特殊情况,这是做选择题的首选方法,本题也可分析出方程至少有一个 负根的充要条件,但是作为选择题不是最好的方法.

7.【答案】D

【详解】 $U = \{0, 1, 2, 3, 4, 5\}, A = \{1, 3\}, B = \{0, 2\}$

 $\therefore C_{U}A = \{0, 2, 4, 5\}, C_{U}B = \{1, 3, 4, 5\}$ $\therefore (\complement_{U}A) \cap (\complement_{U}B) = \{4, 5\}.$ 【点评】本题考查集合的交、补运算. 8.【答案】D 【详解】先化简1g(a^2 +1)<1g(b^2 +1)⇔ a^2 +1< b^2 +1⇔|a|<|b| 又 |a| < |b|不能推出 a < b, a < b不能推出 |a| < |b|. 【点评】本题涉及对数的运算,重点考查充要条件. 9.【答案】C 【详解】"方程 $Ax^2 + By^2 = C$ 表示椭圆" ⇔ " $A \setminus B \setminus C$ 三者符号相同, 且 $A \neq B$ ", 所以"A、B、C三者符号相同" \Leftarrow "方程 $Ax^2 + By^2 = C$ 表示椭圆", 而"A、B、C三者符号相同" ⇒ "方程 $Ax^2 + By^2 = C$ 表示椭圆", 故"A、B、C三者符号相同"是"方程 $Ax^2 + By^2 = C$ 表示椭圆"的必要不充分条件. 【点评】考查命题充分性必要性的判定,涉及椭圆的标准方程. 10.【答案】C 【**详解**】 $Q = \{-1, 0\}, \quad \bigcup P \cup Q = \{-1, 0, 1\}.$ 【点评】考查集合的并集运算. 11.【答案】A 【详解】充分性显然成立, 若 $x_1 = 5$, $x_2 = \frac{1}{2}$, 满足 $x_1 + x_2 > 4 \pm x_1 x_2 > 4$, 但不满足 $x_1 > 2 \pm x_1 = 5$, $x_2 = \frac{1}{2}$, 满足 $x_1 + x_2 = 4$, 但不满足 $x_1 > 2 \pm x_2 = \frac{1}{2}$, 法 x,>2,故必要性不成立. 【点评】考查命题的充分性和必要性的判断. 12.【答案】B 【详解】据题设 $\log_2(a+3) = 2 \Leftrightarrow a = 1$: b = 2 $P = \{5, 2\}, Q = \{1, 2\}, \therefore P \cup Q = \{1, 2, 5\}$ 【点评】考查集合的并集运算. 13.【答案】A 【详解】直线 y = x + 2 与圆 $(x - k)^2 + (y - h)^2 = 2$ 相切 \Leftrightarrow 圆心到直线的距离等于半径,即 $\frac{|k-h+2|}{\sqrt{2}} = \sqrt{2} \Leftrightarrow |k-h+2| = 2 \text{ ff} \bigcup k = h \text{ if } k-h+4 = 0.$ 【点评】考查命题的充分性和必要性的判断、AO COM 【答案】B 14.【答案】B **【详解】** ∴ $A = \{x \in \mathbb{R} ||x| < 2\} = \{x \mid -2 < x < 2\}$ **B** = $\{x \in \mathbb{R} ||\frac{1}{2} < 2^x < 5\} = \{x \mid 2^{-1} < 2^x < 2^{\log_2 5}\}$ $= \{x \mid -1 < x < \log_2 5\}, \quad \therefore A \cap B = \{x \in \mathbf{R} \mid -1 < x < 2\}.$ 【点评】本题考查集合的交集运算. 15.【答案】A 【详解】:: $a=3 \Rightarrow A \subset B$, $(A \subset B \Rightarrow a=3)$, 所以 "a=3" 是 " $A \subset B$ " 的充分不必要条 件. 【点评】考查命题的充分性和必要性的判断.

第二章 函 数

第04天 函数概念(定义域、对应律、值域、分段函数)

1.	函数 $y = \sqrt{1-x} + \sqrt{x}$ 的	定义域是()		
	A. $\{x \mid x \le 1\}$ C. $\{x \mid x \ge 1, \ \vec{x} x \le 0\}$	}	B. $\{x \mid x \ge 0\}$ D. $\{x \mid 0 \le x \le 1\}$	
2.	已知函数 $f(x) = \begin{cases} f(x - 2, x) \\ -2, x \\ 3^x, y \end{cases}$	(x = 0), x > 0 (x = 0), 则 f(2) = 0 (x < 0)	()	
	A. 9	B. 3	C. 0	D2
3.	已知函数 $f(x) = \begin{cases} x^2 + 1 \\ 2^x + d \end{cases}$	$x \le 1, x \le 1, \\ x = f(f(1)) = x, x > 1$	4a,则实数a=()
	A. $\frac{1}{2}$	B. $\frac{4}{3}$	C. 2	D. 4
4.	已知函数 $f(x) = \begin{cases} 2^{x-1} \\ -\log \end{cases}$	-2, x ≤ 1 $_2^{(x+1)}, x > 1$, 且 $f(a)$)=-3,则 $f(6-a)=($)
	A. $-\frac{7}{4}$	B. $-\frac{5}{4}$	C. $-\frac{3}{4}$	D. $-\frac{1}{4}$
5.	已知 $f(x) = \begin{cases} x+1, x < 0, x=0 \\ x-1, x > \end{cases}$	0 ,则 <i>f</i> [<i>f</i> (2)]的值为 0	AC.COM	
	A. $-\frac{1}{3}$	· 間熱线: 13	C. $\frac{2}{3}$	D. $-\frac{2}{3}$
6.	已知函数 <i>f</i> (<i>x</i>) = <i>x</i> ² + 2: A. [0, 3]	$x \ (-2 \leqslant x \leqslant 1 \square x \in \mathbf{Z}),$	则 <i>f</i> (<i>x</i>)的值域是(B. {-1, 0, 3})
	C. {0, 1, 3}		D. [-1, 3]	
7.	已知函数 $y = f(x+1)$ 定	€义域是[-2,3],则y	= f(2x-1)的定义域是	()
	A. $[0, \frac{5}{2}]$		B. [-1, 4]	
	C. [-5, 5]		D. [-3, 7]	
8.	已知函数 $f(x)$, $g(x)$	分别由下表给出		

x	1	2	3
$f(\mathbf{x})$	2	1	1
x	1	2	3
<i>g</i> (<i>x</i>)	3	2	1

(1) f[g(1)] =____; (2) $\nexists g[f(x)] = 2$, $\bigcup x =$ ____.

9. 函数 $f(x) = \frac{2x+1}{x+1}$ 在区间[1, 4]上的值域为_____.

10. 函数 $f(x) = x + \sqrt{2x - 1}$ 的值域为_____.

- 11. 已知函数 $f(x) = \begin{cases} 2^x, x \ge 0 \\ -x, x < 0 \end{cases}$, 如果 $f(x_0) = 2$, 那么实数 x_0 的值为 ()
- A. 4
 B. 0
 C. 1 $\equiv 4$ D. 1 $\equiv -2$

 12. $\Box f(x) = \begin{cases} 1, x \ge 0 \\ 0, x < 0 \end{cases}$, $M = \pi = x f(x) + x \le 2$ 的解集是_____.
 13. $\Box f(x) = 2^x (0 < x \le 3)$ 的反函数的定义域为 ()

 13. $\Box g f(x) = 2^x (0 < x \le 3)$ 的反函数的定义域为 ()
 A. (0, + ∞)
 B. (1, 8]
 C. (0, 3]
 D. [8, + ∞)

 14. $\Box g y = |x-2|$ 的图像与函数 $y = \log_2 x$ 的图像交点的个数是 ()
 A. 4
 B. 3
 C. 2
 D. 1

 15. 定义函数 f(x), g(x):
 E.
 E.
 E.
 E.
 E.
 E.

x	1	2	3	x	1	2	3
$f(\mathbf{x})$	1	3	2	g (x)	3	2	1

满足 f[g(x)] > g[f(x)]的 x 的值是_____.

16. 已知函数
$$f(x) = a^x + \frac{x-2}{x+1}, f(3) = 8\frac{1}{4}.$$

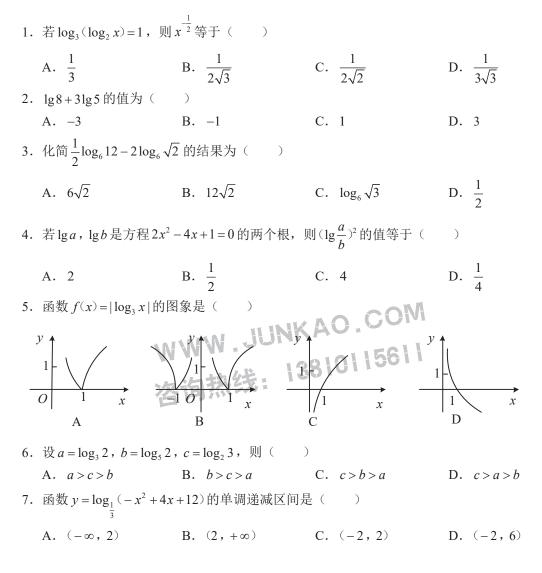
- (1) 求实数 a 的值;
- (2) 试判断函数 f(x) 在 $(-1, +\infty)$ 上的单调性,并证明你的结论;
- (3) 求所有满足条件 f(x) + 1 = 0 的实数 x.

第05天 函数性质(单调性、奇偶性、反函数)

1. 函数 $y = \sqrt{x^2 + 2x - 3}$ 的单调递减区间为() B. $(-\infty, -1]$ C. $[1, +\infty)$ D. [-3, -1]A. $(-\infty, -3]$ 2. 若函数 $f(x) = 4x^2 - kx - 8$ 在 [5, 8] 上是单调函数,则 k 的取值范围是 () A. $(-\infty, 40)$ B. [40, 64] C. $(-\infty, 40] \cup [64, +\infty)$ D. $[64, +\infty)$ 3. 函数 $y = x - \frac{1}{x} \alpha [1, 2]$ 上的最大值为 () B. $\frac{3}{2}$ C. 2 D. 3 A. 0 4. 已知 f(x) 是定义在 R 上的偶函数,在区间 $[0, +\infty)$ 为增函数,且 $f(\frac{1}{3})=0$,则不等式 $f(\log_{\frac{1}{2}}x) > 0$ 的解集为() A. $(\frac{1}{2}, 2)$ B. $(2, +\infty)$ D. $(0, \frac{1}{2}) \bigcup (2, +\infty)$ C. $(\frac{1}{2}, 1) \bigcup (2, +\infty)$ 5. 已知 $f(x) = ax^3 + bx - 4$,其中 a, b 为常数,若 f(-2) = 2,则 f(2) 的值等于() B. -4 C. -6 A. -2 D. -10 6. 已知定义在 R 上的函数 $f(x) = 2^{|x-m|} - 1$ (*m*为实数)为偶函数, 记 $a = f(\log_{0.5} 3)$, $b = f(\log, 5), c = f(2m), 则a, b, c$ 的大小关系为() D. c < b < aA. a < b < cB. a < c < bC. c < a < b7. 函数 $f(x) = x^2 - |x|$ 的单调递减区间是 8. 奇函数 *f*(*x*) 在区间[3, 7] 上是增函数,在区间[3, 6] 上最大值是 4,最小值是 –1, 则2*f*(-6)+*f*(-3)=____. 9. 已知点(3,9)在函数*f*(*x*)=1+*a^x*的图像上,则*f*(*x*)的反函数*f*⁻¹(*x*)=____. 10. 已知函数*f*(*x*)是定义在**R**上的奇函数,当*x*≥0时,*f*(*x*)=*x*(1+*x*).求函数的解析式. 11. 已知二次函数 $f(x) = x^2 - mx + 1$, (1) 若函数 y = f(x) 是偶函数, 求实数^m 的取值范围; (2) 若函数g(x) = f(x) + (2m-1)x - 9, 且 $\forall m \in [-1, 3]$, 都有 $g(x) \leq 0$ 恒成立, 求实数x的取值范围; (3) 若函数 $h(x) = f(x) - (1-m) x^2 + 2x$,求函数 $y = h(x) \oplus x \in [-1, 1]$ 的最小值 H(m).

第06天 二次函数

1.	函数 $y = -x^2 - 2x - 8$ 的最大值是 ()		
	A8 B7	6 D. 7	不确定
2.	已知二次函数 $y = ax^2 - 4x + 1$ 有最小值 -1 ,则	的值为()	
	A. 2	2	
	C. 2或-2	. 以上答案都不对	
3.	已知 $0 \le x \le \frac{3}{2}$,则函数 $f(x) = x^2 + x + 1$ (
	A. 有最小值 $-\frac{3}{4}$, 无最大值	. 有最小值 <mark>3</mark> ,最大值1	
	C. 有最小值 1, 最大值 19 4	. 无最小值和最大值	
4.	" $a=2$ "是"函数 $f(x)=x^2+2ax-2$ 在区间(,-2]内单调递减"的()
	A. 充分不必要条件	. 必要不充分条件	
	C. 充分必要条件	. 既不充分也不必要条件	
5.	已知二次函数 $f(x) = ax^2 + 2x + c(x \in \mathbf{R})$ 的值域	$[0, +\infty), 则a+c$ 的最小	值是()
	A. 2 B. $4\sqrt{2}$. 4 D. 2	$2\sqrt{2}$
6.	已知关于 x 的方程 $x^2 - 2mx + m - 3 = 0$ 的两个实	根 x_1 , x_2 满足 $x_1 \in (-1, 0)$,	, $x_2 \in (3, +\infty)$,
	则实数 <i>m</i> 的取值范围是 ()		
	A. $(\frac{2}{3}, 3)$	$(\frac{6}{5}, 3)$	
	C. $(\frac{2}{3}, \frac{6}{5})$	$(-\infty, \frac{2}{3})$	
7.	若二次函数 $y = ax^2 + bx + c$ 的图象与 x 轴交于	-2,0), <i>B</i> (4,0),且函数	(的最大值为9,
	则这个二次函数的表达式是	MCOM	
8.	则这个二次函数的表达式是 已知函数 $f(x) = x^2 - 2x$, $g(x) = ax + 2(a > 0)$	讨任意的 x ₁ ∈[−1, 2],存在	$\Xi x_0 \in [-1, 2]$,


- 8. 已知函数 $f(x) = x^2 2x$, g(x) = ax + 2(a > 0), 使 $g(x_1) = f(x_0)$, 则 *a* 的取值范围是_____. 使 $g(x_1) = f(x_0)$,则 a 的取值范围是_____. 9. 已知函数 $f(x) = 4x^2 - 4ax + (a^2 - 2a + 2)$ 在闭区问[0, 2]上有最小值 3,求实数 a 的值.
- 10. 求函数 $y = 4^x 2^{x+1} + 3$, $x \in (-\infty, 1]$ 的值域和单调区间.

第07天 指数函数

1. 若 2 < *a* < 3, 化简 $\sqrt{(2-a)^2} + \sqrt[4]{(3-a)^4}$ 的结果是 () A. 5 - 2aB. 2a-5C. 1 D. -1 2. 设 $2^a = 5^b = m$, 且 $\frac{1}{a} + \frac{1}{b} = 2$, 则 *m* 等于 () A. $\sqrt{10}$ B. 10 C. 20 D. 100 3. 如图是指数函数① $y = a^x$, ② $y = b^x$, ③ $y = c^x$, ④ $y = d^x$ 的图象, 则 a, b, c, d 与1的大小 关系是(0 A. a < b < 1 < c < dB. b < a < 1 < d < cC. 1 < a < b < c < dD. a < b < 1 < d < c4. 函数 $y = (\frac{1}{2})^x - 2$ 的图象必过() A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 5. 当 $x \in [-2, 2)$ 时, $y = 3^{-x} - 1$ 的值域是() B. $[-\frac{8}{9}, 8]$ A. $(-\frac{8}{9}, 8]$ JUNK A.C. 20M C. $(\frac{1}{9}, 9)$ a的取值范围是3810115611 6. 若 $(\frac{1}{2})^{2a+1} < (\frac{1}{2})^{3-2a}$, 则实数 咨询热线: B. $(\frac{1}{2}, +\infty)$ A. $(1, +\infty)$ D. $(-\infty, \frac{1}{2})$ C. $(-\infty, 1)$ 7. 化简 $2^{-(2k+1)} - 2^{-(2k-1)} + 2^{-2k}$ 等于() B. $2^{-(2k-1)}$ A. 2^{-2k} C. $-2^{-(2k+1)}$ D. 2 8. 函数 $f(x) = a^x (a > 0, 且a ≠ 1)$ 对任意正实数 x, y 都有 () A. f(xy) = f(x) f(y)B. f(xy) = f(x) + f(y)D. f(x + y) = f(x) + f(y)C. f(x+y) = f(x) f(y)- 14 -

11. 函数 $f(x) = a^{x}(a \ge 0, \exists a \neq 1)$ 在区间[1, 2]上的最大值比最小值大 $\frac{a}{2}$, 求 a 的值.

第08天 对数函数

8. 若 $\log_a \frac{2}{3} \ge 1$ (*a* > 0, 且*a* ≠ 1),则*a*的取值范围为() A. $[\frac{2}{3}, +\infty)$ B. $(1, +\infty)$ C. $[\frac{2}{3}, 1)$ D. $[\frac{3}{2}, +\infty)$ 9. 已知集合 $A = \{y | y = \log_2 x, x > 1\}, B = \{y | y = (\frac{1}{2})^x, x > 1\}, M A \cap B = ($) A. $\{y \mid 0 < y < \frac{1}{2}\}$ B. $\{y \mid 0 < y < 1\}$ C. $\{y \mid \frac{1}{2} < y < 1\}$ D. \emptyset 10. 函数 $f(x) = \log_{\frac{1}{2}}(x^2 - 6x + 17)$ 的值域是 () A. **R** B. $(-\infty, -3]$ C. $[8, +\infty)$ D. $[3, +\infty)$ 12. 已知 $f(x) = \log_a (3 - ax) 在 x \in [0, 2]$ 上单调递减,则^{*a*}的取值范围是_ 13. 已知 *x* 满足不等式: $2(\log_{\frac{1}{2}}x)^2 + 7\log_{\frac{1}{2}}x + 3 \le 0$, 求函数 $f(x) = (\log_{2}\frac{x}{4}) \cdot (\log_{2}\frac{x}{2})$ 的最大值

和最小值.

第09天 函数经典例题(1)

1.	设函数 $f(x) = \log_a(x + $	<i>b</i>)(<i>a</i> >0, <i>a</i> ≠1)的图象	过点(0,0),其反函数	(的图象过点(1,2),则
	<i>a</i> + <i>b</i> 等于 ()			
	A. 6	B. 5	C. 4	D. 3
2.	函数 $y = \frac{x-2}{2x-1} (x \neq \frac{1}{2})$	的反函数是()	MOD COM	
	A. $y = \frac{2x-1}{x+2} (x \neq -2)$	WW.JUNK	B. $y = \frac{x-2}{2x-1} (x \neq \frac{1}{2})$	
	$A. y = \frac{2x-1}{x+2} (x \neq -2)$ $C. y = \frac{x+1}{2x-1} (x \neq \frac{1}{2})$	询热线:13	D. $y = \frac{2x-1}{x-2} (x \neq 2)$	
	设函数 $f(x) = \begin{cases} 1 - x^2, \\ x^2 + x - x \end{cases}$			
	A. $\frac{15}{16}$	B. $-\frac{27}{16}$	C. $\frac{8}{9}$	D. 18
4.	已知 $0 < a < 1$, $x = \log_a$	$\sqrt{2} + \log_a \sqrt{3}$, $y = \frac{1}{2} \log_a \sqrt{3}$	$\log_a 5$, $z = \log_a \sqrt{21} - \log_a \sqrt{21}$	$g_a\sqrt{3}$,则())
	A. $x > y > z$	B. $z > y > x$	C. $y > x > z$	D. $z > x > y$
		- 16	-	

5. 下列函数中, 满足"对任意 x_1 , $x_2 \in (0, +\infty)$, 当 $x_1 < x_2$ 时, 都有 $f(x_1) > f(x_2)$ "的是())

- A. $f(x) = \frac{1}{x}$ B. $f(x) = (x-1)^2$
- C. $f(x) = e^x$ D. $f(x) = \ln(x+1)$
- 6. 函数 $f(x) = \frac{\sqrt{|x-2|-1|}}{\log_2(x-1)}$ 的定义域为_____.
- 7. $\log_{\sqrt{2}+1}(3-2\sqrt{2})$ 的值为_____
- 8. 若函数 f(x) = (x + a)(bx + 2a) (常数 $a, b \in \mathbb{R}$) 是偶函数,且它的值域为(-∞, 4],则该 函数的解析式为 .
- 9. 若函数 y = f(x) 的定义域是[0, 2],则函数 $g(x) = \frac{f(2x)}{x-1}$ 的定义域是_____
- 10. 方程 $\frac{1+3^{-x}}{1+3^{x}} = 3$ 的解是____. 11. 求解方程: $\log_{3}(3^{x}-1)\log_{3}(3^{x-1}-\frac{1}{3}) = 2$.

12. 解方程:
$$\sqrt{25^{x^2+x-0.5}} = \sqrt[4]{5}$$

第10天 函数经典例题(2)

1. $@a = \log_{1} \tan 70^{\circ} , \ b = \log_{1} \sin 25^{\circ} , \ c = (\frac{1}{2})^{\cos 25^{\circ}} , \ \square \ f \ ($) B. b < c < a C. a < c < bA. a < b < cD. c < b < a2. 设a > 0, $a \neq 1$, 函数 $y = \log_a x$ 的反函数与 $y = \log_a \frac{1}{x}$ 的反函数的图象关于(A. x 轴对称 B. y 轴对称 C. G = x 轴对称 I 3. 设 $a = 2^{0.3}$, $b = 0.3^2$, $c = \log_x (x^2 + 3)(x > 1)$, 则a, b, c 的大小关系是 (D. 原点对称) B. b < c < aA. a < b < cC. c < b < aD. b < a < c4. 已知 f(x)是定义在 R 上的偶函数,它在 $[0, +\infty)$ 上递减,那么一定有 . A. $f(-2) \ge f(a^2 - 2a + 3)$ B. $f(-2) > f(a^2 - 2a + 3)$ C. $f(-2) < f(a^2 - 2a + 3)$ D. $f(-2) \le f(a^2 - 2a + 3)$ 5. 在**R**上定义的函数 f(x)是偶函数,且 f(x) = f(2-x),若 f(x)在区间[1,2]上是减函数,则 函数 f(x) () A. 在区间[-2,-1]上是增函数,区间[3,4]上是增函数 B. 在区间[-2,-1]上是减函数,区间[3,4]上是减函数 C. 在区间[-2,-1]上是减函数,区间[3,4]上是增函数

D. 在区间[-2, -1]上是增函数,区间[3, 4]上是减函数 6. 记 $f(x) = \log_3(x+1)$ 的反函数为 $y = f^{-1}(x)$,则方程 $f^{-1}(x) = 8$ 的解 $x = $
7. 若 $f(x) = \frac{1}{2^x - 1} + a$ 是奇函数,则 $a = _$
8. 若函数 $f(x) = x + 1$, $g(x) = \sqrt{x}$, $\varphi(x) = e^x$, 则函数 $g\{\varphi^{-1}[f(x)]\}$ 的定义域是
9. $\exists \exists f(x) = \begin{cases} \log_3 x, x > 0 \\ a^x + b, x \leq 0 \end{cases}$, $\exists f(0) = 2, f(-1) = 3, \forall f[f(-3)] = ___$.
10. 设 $f(x) \neq (x^2 + \frac{1}{2x})^6$ 展开式的中间项, 若 $f(x) \leq mx$ 在区间 [$\frac{\sqrt{2}}{2}$, $\sqrt{2}$]上恒成立,则实数 <i>m</i> 的 取值范围是
11. 若 <i>a</i> , <i>b</i> 为方程 $x^2 - \sqrt{10}x + 2 = 0$ 的两根,则 $\log_4 \frac{a^2 - ab + b^2}{ a-b }$ 的值为
12. 解方程: $lg(8+2^{x+1})=2x(1-lg5)$.

WWW.JUNKAO.COM 咨询热线: 13810115611

第二章 函 数

第04天 函数概念(定义域、对应律、值域、分段函数)

1.【答案】D 【详解】由 $\begin{cases} 1-x \ge 0 \\ x \ge 0 \end{cases}$ 得 $0 \le x \le 1$. 2.【答案】D 【详解】由题函数解析式: f(2) = f(2-1) = f(1) = f(0) = -2. 3.【答案】C 【详解】由题意,得f(1)=2, $f(f(1))=f(2)=2^2+2a=4a$, 解得a=2. 4.【答案】A 【详解】:: f(a) = -3, ∴当 $a \leq 1$ 时, $f(a) = 2^{a-1} - 2 = -3$, 则 $2^{a-1} = -1$, 此等式显然不成立, 当a > 1时, $-\log_2(a+1) = -3$, 解得a = 7, : $f(6-a) = f(-1) = 2^{-1-1} - 2 = -\frac{7}{4}$. 【点评】考查分段函数求值. 5.【答案】C 【详解】 $f(\frac{2}{3}) = \frac{2}{3} - 1 = -\frac{1}{3}$, $f(-\frac{1}{3}) = \frac{2}{3}$. 【点评】考查复合函数的对应律. 6.【答案】B **【首**衆】 B 【**详解】**函数 $f(x) = x^2 + 2x(-2 \le x \le 1 \exists x \in \mathbb{Z})$,所以 x = -2, -1, 0, 1; 对应的函数值分别 为: 0, -1, 0, 3; 所以函数的值域为: $\{-1, 0, 3\}$. 【答案】A 【详解】 $-2 \le x \le 3 \Rightarrow -1 \le x + 1 \le 4$. 所以 y = f(x) 的定义域为[-1, 4] 7.【答案】A $-1 \leq 2x - 1 \leq 4 \Rightarrow 0 \leq x \leq \frac{5}{2}$ 所以 y = f(2x - 1)的定义域为[0, $\frac{5}{2}$]. 【点评】考查复合函数的定义域. 8.【答案】(1)1(2)1 【详解】 (1) 由表知 g(1)=3, : f[g(1)]=f(3)=1; (2) 由表知 g(2)=2,又 g[f(x)]=2,得 f(x)=2,再由表知 x=1.

9.【答案】 $[\frac{3}{2}, \frac{9}{5}]$

【详解】 $f(x) = \frac{2x+1}{x+1} = \frac{2x+2-1}{x+1} = 2 - \frac{1}{x+1}$ 在[1, 4]上单调递增,所以函数最小值为 $f(1) = \frac{3}{2}$,最大值为 $f(4) = \frac{9}{5}$,所以值域为[$\frac{3}{2}, \frac{9}{5}$].

10.【答案】 $[\frac{1}{2}, +\infty)$

【详解】令 $t = \sqrt{2x-1}(t \ge 0)$,则 $x = \frac{t^2+1}{2}$, $y = \frac{1}{2}t^2 + t + \frac{1}{2}$ 在[0,+∞)为增函数,则 $y \ge \frac{1}{2}$,即函数的值域为[$\frac{1}{2}$,+∞).

11.【答案】D

【详解】本题 f(x)为分段函数, 要分别计算每段.

若 $2^{x_0} = 2$,则 $x_0 = 1$,满足 $x_0 \ge 0$.若 $-x_0 = 2$,则 $x_0 = -2$,满足 $x_0 < 0$.

所以,实数x₀的值为1或-2.

【点评】考查分段函数的对应律,注意分类讨论.

12.【**详解】**原不等式等价于 $\begin{cases} x \ge 0 \\ x+x \le 2 \end{cases}$ 或 $\begin{cases} x < 0 \\ x \cdot 0+x \le 2 \end{cases}$, 解得 $0 \le x \le 1$ 或 x < 0,

所以解集为(-∞,1].

【点评】考查分段函数的对应律,注意讨论.

13.【答案】B

【详解】反函数的定义域就是原函数 $f(x) = 2^{x}(0 < x \le 3)$ 的值域;

又原函数 $f(x) = 2^x (0 < x \le 3)$ 是单调递增函数, $\therefore 2^0 < f(x) \le 2^3 \Leftrightarrow 1 < f(x) \le 8$.

14.【答案】C 【详解】画出两个函数的图像,有2个交点、AO.COM $y = \log_2 x$ $y = \log_2 x$ 13810115611 $y = \sqrt{x}$ $y = \sqrt{x}$ x

15.【答案】2

【详解】

$$\begin{array}{l} x = 1, \ f[g(x)] > g[f(x)] \Leftrightarrow f[g(1)] > g[f(1)] \Leftrightarrow f[3] > g[1] \Leftrightarrow 2 > 3 \\ x = 2, \ f[g(x)] > g[f(x)] \Leftrightarrow f[g(2)] > g[f(2)] \Leftrightarrow f[2] > g[3] \Leftrightarrow 3 > 1 \\ x = 3, \ f[g(x)] > g[f(x)] \Leftrightarrow f[g(3)] > g[f(3)] \Leftrightarrow f[1] > g[2] \Leftrightarrow 1 > 2 \end{array}$$

只有x=2满足不等式.

16.【详解】

(1) $f(3) = 8\frac{1}{4} \Leftrightarrow a^3 + \frac{3-2}{3+1} = \frac{33}{4} \Leftrightarrow a^3 = 8 \Leftrightarrow a = 2$. (2) 断言 $f(x) = 2^x + \frac{x-2}{x+1} = 2^x + 1 - \frac{3}{x+1} 在 (-1, +\infty) 上单调递增.$ 证明如下: 设-1 < $x_1 < x_2 < +\infty$ $f(x_1) - f(x_2) = (2^{x_1} + \frac{x_1 - 2}{x_1 + 1}) - (2^{x_2} + \frac{x_2 - 2}{x_1 + 1}) = (2^{x_1} - 2^{x_2}) + \frac{3(x_1 - x_2)}{(x_1 + 1)(x_1 + 1)}$: $-1 < x_1 < x_2 < +\infty$, $\therefore 2^{x_1} < 2^{x_2}$, $x_1 - x_2 < 0$, $x_1 + 1 > 0$, $x_2 + 1 > 0$ $\therefore 2^{x_1} - 2^{x_2} < 0, \quad \frac{3(x_1 - x_2)}{(x_2 + 1)(x_1 + 1)} < 0, \quad \therefore f(x_1) - f(x_2) < 0, \quad \therefore f(x_1) < f(x_2)$ 所以 $f(x) = 2^x + \frac{x-2}{x+1} 在(-1, +\infty)$ 上单调递增. (3) 当 $x \in (-1, +\infty)$ 时, ∴ $f(x) = 2^x + \frac{x-2}{x+1} \pm (-1, +\infty)$ 上单调增, ∴ *f*(*x*)+1=0在(-1, +∞)上至多有一个实根. \mathbb{X} : $f(0) + 1 = 2^0 + \frac{0-2}{0+1} + 1 = 0$, ∴ f(x)+1=0 在 $(-1, +\infty)$ 上有且仅有一个实根 x=0. 当 $x \in (-\infty, -1)$ 时, $\therefore 2^x > 0, 1 > 0, x + 1 < 0, x - 2 < 0,$ $\therefore \frac{x-2}{x+1} > 0$, $\therefore f(x)+1 = 2^x + \frac{x-2}{x+1} + 1 > 0$, *∴ f*(*x*)+1=0在(-∞, -1)上无实根. 综上所述, f(x)+1=0有且仅有一个实根x=0. COM 第05天 函数性质(单调性、奇偶性、反函数)

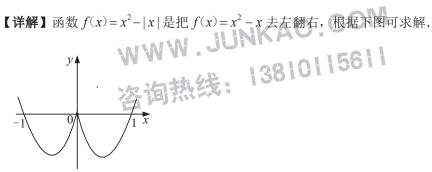
1.【答案】A

【详解】该函数的定义域为($-\infty$, -3]U[1, $+\infty$),函数 $f(x) = x^2 + 2x - 3$ 的对称轴为x = -1, 由函数的单调性可知该函数在区间($-\infty$, -3]上是减函数.

2.【答案】C

【**详解】**对称轴为 $x = \frac{k}{8}$,则 $\frac{k}{8} \le 5$ 或 $\frac{k}{8} \ge 8$,解得 $k \le 40$ 或 $k \ge 64$.

3.【答案】B


【详解】函数 $y = x \, car{1,2}$ 上是增函数,函数 $y = -\frac{1}{x} car{1,2}$ 上是增函数,

:函数 $y = x - \frac{1}{r}$ 在[1, 2] 上是增函数. 当 x = 2 时, $y_{max} = 2 - \frac{1}{2} = \frac{3}{2}$.

4.【答案】D

【详解】根据 f(x) 是定义在 R 上的偶函数,在区间 $[0, +\infty)$ 为增函数, $f(\frac{1}{2}) = 0$,根据图象 关于 y 轴对称可知, $f(x) > 0 \Leftrightarrow x > \frac{1}{3}$ 或 $x < -\frac{1}{3}$. 所以 $f(\log_{\frac{1}{2}}x) > 0 \Leftrightarrow \log_{\frac{1}{2}}x > \frac{1}{3}$ 或 $\log_{\frac{1}{2}}x < -\frac{1}{3}$, 解得 $x \in (0, \frac{1}{2}) \cup (2, +\infty)$. 5.【答案】D 【详解】:: $f(x) = ax^3 + bx - 4$ f(-2) = -8a - 2b - 4 = 2设 f(2) = 8a + 2b - 4 = k两式相加得 $-8 = 2 + k \implies k = -10$ 【点评】考查函数的奇偶性. 6.【答案】C 【详解】因为函数 $f(x) = 2^{|x-m|} - 1$ 为偶函数,所以 m = 0,即 $f(x) = 2^{|x|} - 1$, 所以 $a = f(\log_{0.5} 3) = f(\log_2 \frac{1}{2}) = 2^{\log_2 \frac{1}{3}} - 1 = 2^{\log_2 3} - 1 = 3 - 1 = 2$, $b = f(\log_2 5) = 2^{\log_2 5} - 1 = 4$, $c = f(2m) = f(0) = 2^0 - 1 = 0$, 所以c < a < b. 【点评】考查函数的奇偶性和函数的图像.

7.【答案】 $(-\infty, -\frac{1}{2}], [0, \frac{1}{2}]$

【点评】考查函数的单调性.

8.【答案】-7 【详解】由题意可知. f(-6) = -f(6) = -4, f(-3) = -f(3) = 1, $\therefore 2f(-6) + f(-3) = -7$.

【点评】考查函数的单调性、奇偶性.

- 9.【答案】log₂(x-1)
 【详解】将点(3,9)代入函数 f(x)=1+a^x中得 a=2,所以 f(x)=1+2^x, 用 y 表示 x,得 x=log₂(y-1),所以 f⁻¹(x)=log₂(x-1).
- 10.【详解】

据已知, 当 $x \ge 0$ 时, f(x) = x(1+x), 当x < 0时, -x > 0, 则f(x) = -f(-x) = -[-x(1-x)] = x(1-x), 所以函数的解析式为 $f(x) = \begin{cases} x(1+x), x \ge 0\\ x(1-x), x < 0 \end{cases}$.

【点评】考查函数的奇偶性.

- 11.【详解】
 - (1)函数 y = f(x) 是偶函数∴ f(-x) = f(x)
 ∴ x² + mx + 1 = x² mx + 1
 ∴ 2mx = 0 ∴ m = 0
 (2) g(x) = x² + (m-1)x 8
 - **∵**∀*m*∈[-1,3],都有*g*(*x*)≤0恒成立

$$:: \begin{cases} x^2 - 2x - 8 \le 0 \\ x^2 + 2x - 8 \le 0 \end{cases} :: 实数 x 的取值范围[-2, 2]$$

(3)
$$h(x) = mx^2 + (2 - m) x + 1$$

① 当 $0 < m < \frac{2}{3}$ 时, 函数 $y = h(x)$ 的对称轴 $x = \frac{m-2}{2m} < -1$,
∴ 函数 $y = h(x)$ 在 $x \in [-1, 1]$ 的最小值 $H(m) = h(-1) = 2m - 1$
② 当 $m \ge \frac{2}{3}$ 时, 函数 $y = h(x)$ 的对称轴 $x = \frac{m-2}{2m} \in [-1, 1]$,
∴ 函数 $y = h(x)$ 在 $x \in [-1, 1]$ 的最小值 $H(m) = h(\frac{m-2}{2m}) = 2 - \frac{m}{4} - \frac{1}{m}$
③ 当 $m < 0$ 时, 函数 $y = h(x)$ 的对称轴 $x = \frac{m-2}{2m} = \frac{1}{2} - \frac{1}{m} > 0$,
∴ 函数 $y = h(x)$ 在 $x \in [-1, 1]$ 的最小值 $H(m) = h(-1) = 2m - 1$
④ 当 $m = 0$ 时, 函数 $y = h(x) = 2x + 1$
∴ 函数 $y = h(x)$ 在 $x \in [-1, 1]$ 的最小值 $H(m) = h(-1) = -1$
 $(3) = \frac{2m - 1}{4}, m < \frac{2}{3}$
 $(2 - \frac{m}{4} - \frac{1}{m}, m \ge \frac{2}{3}$

第06天 二次函数

1.【答案】B

【详解】 $y = -(x+1)^2 - 7 \le -7$ 该二次函数的图像即抛物线开口向下,有最大值-7.

【**点评**】考查二次函数.

2.【**答案】**A

【**详解】**二次函数
$$y = ax^2 - 4x + 1$$
的最小值 $\frac{4a - (-4)^2}{4a} = -1$,得 $a = 2$.

【点评】考查二次函数.

3.【答案】C

【详解】
$$f(x) = x^2 + x + 1 = (x + \frac{1}{2})^2 + \frac{3}{4}$$
,

画出该函数的图象知, f(x)在区间 $[0, \frac{3}{2}]$ 上是增函数,

所以
$$f(x)_{\min} = f(0) = 1$$
, $f(x)_{\max} = f(\frac{3}{2}) = \frac{19}{4}$.

【点评】考查二次函数.

4.【答案】A

【详解】函数 $f(x) = x^2 + 2ax - 2$ 在区间 $(-\infty, -2]$ 内单调递减" ⇔ $-a \ge -2$ ⇔ $a \le 2$, 所以 "a = 2" 是 "函数 $f(x) = x^2 + 2ax - 2$ 在区间内单调递减"的充分不必要条件.

- 10

5.【答案 A

【详解】由题二次函数 $f(x) = ax^2 + 2x + c(x \in \mathbb{R})$ 的值域为 $[0, +\infty)$,

$$\therefore \begin{cases} a > 0 \\ \frac{4ac - 4}{4a} = 0 \end{cases} \stackrel{\Rightarrow}{\Rightarrow} \begin{cases} a > 0 \\ ac = 1 \end{cases}, \quad \therefore a + c \ge 2\sqrt{ac} = 2, \quad \text{in E}[0] \stackrel{\cong}{=} a = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = c = 1 \text{ ID R} \stackrel{\text{in E}}{\Rightarrow} \exists d = 1 \text{ ID R} \stackrel{\text{in E}}{\implies} \exists d = 1 \text{ ID R} \stackrel{\text{in E}}{\implies} \exists d = 1 \text{ ID R} \stackrel{\text{$$

6.【答案】B

【详解】设
$$f(x) = x^2 - 2mx + m - 3$$
,由题意可知:
 $\begin{cases} f(0) < 0 \\ f(3) < 0 \\ f(-1) > 0 \end{cases}$, $\therefore \begin{cases} m - 3 < 0 \\ 9 - 6m + m - 3 < 0 \\ 1 + 2m + m - 3 > 0 \end{cases}$,即 $\begin{cases} m < 3 810115611 \\ m > \frac{6}{5} \\ . . . \frac{6}{5} < m < 3 \\ m > \frac{2}{3} \end{cases}$

7.【答案】 y = -(x+2)(x-4)【详解】设 y = a(x+2)(x-4), 对称轴 x = 1. 当 x = 1时, $y_{max} = -9a = 9$, a = -1. 【点评】考查二次函数. 8.【答案】 $(0, \frac{1}{2}]$

【详解】 $x \in [-1, 2]$ 时, 函数 $f(x) = x^2 - 2x$ 的值域为 A = [-1, 3], $x \in [-1, 2]$ 时, g(x) = ax + 2(a > 0)的值域为 B = [2 - a, 2 + 2a], 由题意 $B \subseteq A$, 则有 $\begin{cases} 2 - a \ge -1 \\ 2 + 2a \le 3 \end{cases}$, 又 a > 0, 故解得 $0 < a \le \frac{1}{2}$.

- 9.【详解】 $f(x) = 4(x \frac{a}{2})^2 + 2 2a$

 - (2) 0 ≤ $\frac{a}{2}$ ≤ 2 即 0 ≤ a ≤ 4 时, $f(x)_{\min} = f(\frac{a}{2}) = 2 2a = 3$, 解得: $a = -\frac{1}{2}$ (舍去);

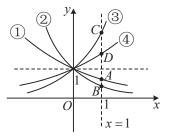
(3)
$$\frac{a}{2} > 2 \boxplus a > 4 \boxplus$$
, $f(x)_{\min} = f(2) = a^2 - 10a + 18 = 3$, \mathbb{H} ; $a = 5 + \sqrt{10}$;

综上可知: a的值为 $1-\sqrt{2}$ 或 $5+\sqrt{10}$.

【点评】考查二次函数.

10.【详解】

- 【答案】C
 【详解】原式=|2-a|+|3-a|,
 ∵2<a<3, ∴原式=a-2+3-a=1.
- 2.【答案】A


【详解】: $2^{a} = m$, $5^{b} = m$, $\therefore 2 = m^{\frac{1}{a}}$, $5 = m^{\frac{1}{b}}$, $\therefore 2 \times 5 = m^{\frac{1}{a}} \cdot m^{\frac{1}{b}} = m^{\frac{1}{a+\frac{1}{b}}}$

 $\therefore m^2 = 10$, $\therefore m = \sqrt{10}$.

3.【答案】B

【详解】

作直线 x=1, 与四个图象分别交于 $A \times B \times C \times D$ 四点, 由于 x=1 代入各个函数可得函数值等 于底数的大小,所以四个交点的纵坐标越大,则底数越大,由图可知b<a<1<d<c.

4.【答案】D

【详解】函数 $y = (\frac{1}{2})^x$ 的图象上所有的点向下平移2个单位,就得到函数 $y = (\frac{1}{2})^x - 2$ 的图象, 所以观察 $y = (\frac{1}{2})^x - 2$ 的图象知.函数 $y = (\frac{1}{2})^x - 2$ 的图象必过第二、三、四象限.

5.【答案】A

【详解】 $y = 3^{-x} - 1$, $x \in [-2, 2)$ 上是减函数, $\therefore 3^{-2} - 1 < y \le 3^2 - 1$, 即 $-\frac{8}{9} < y \le 8$.

6.【答案】B

【详解】原式等价于 2a+1>3-2a, 解得 $a>\frac{1}{2}$.

7.【答案】C

 $\begin{bmatrix} \texttt{iff} \\ \texttt{k} \end{bmatrix} 2^{-(2k+1)} - 2^{-(2k+1)+2} + 2^{-(2k+1)+1} = 2^{-(2k+1)} - 2^2 \cdot 2^{-(2k+1)} + 2 \cdot 2^{-(2k+1)} = -2^{-(2k+1)}.$

【点评】考查指数的常用公式.

- 8.【答案】C 【详解】 $f(x+y) = a^{x+y} = a^x a^y = f(x) f(y)$. KAO COM 【点评】考查指数的常用公式
- $f_{\text{max}} = f(-2) = (\frac{1}{3})^{-2-1} = 27$. 9.【答案】D 【详解】当x = -2时, f(x)

【点评】考查利用函数的单调性求值域.

10.【答案】C

【详解】由 $y=0.6^x$ 在区间 $(0, +\infty)$ 是单调减函数可知,

 $0 < 0.6^{1.5} < 0.6^{0.6} < 1$, $X 1.5^{0.6} > 1$.

【点评】考查指数不等式.

11.【**详解**】①若 *a* >1,则 *f*(*x*)是增函数, ∴ *f*(*x*)在[1, 2]上的最大值为 *f*(2),最小值为 *f*(1).

第08天 对数函数

1.【答案】C 【详解】: $\log_3(\log_2 x) = 1$, $\therefore \log_2 x = 3$, : $x = 2^3 = 8$, $\iint x^{-\frac{1}{2}} = \frac{1}{\sqrt{8}} = \frac{1}{2\sqrt{2}}$.

- 2.【答案】D 【详解】 $lg8+3lg5=lg8+lg5^3=lg8+lg125=lg(8\times 125)=lg1000=3$.
- 3.【答案】C

【详解】原式 =
$$\log_6 \sqrt{12} - \log_6 2 = \log_6 \frac{\sqrt{12}}{2} = \log_6 \sqrt{3}$$
.

4.【答案】A

【**详解】**由根与系数的关系,得
$$\begin{cases} \lg a + \lg b = 2 \\ \lg a \cdot \lg b = \frac{1}{2} \end{cases}$$

:
$$(\lg \frac{a}{b})^2 = (\lg a - \lg b)^2 = (\lg a + \lg b)^2 - 4\lg a \cdot \lg b = 2^2 - 4 \times \frac{1}{2} = 2$$
.

5.【答案】A

「二米」A 【详解】 $y = |\log_3 x|$ 的图象是保留 $y = \log_3 x$ 的图象位于 x 轴上半平面的部分(包括与 x 轴的 交点),而把下半平面的部分沿 x 轴翻折到上半平面而得到的. 【答案】D

- 6.【答案】D 【详解】 $a = \log_3 2 < \log_3 3 = 1; c = \log_2 3 > \log_2 2 = 1$, 由对数函数的性质可知 $\log_5 2 < \log_3 2$, $\therefore b < a < c$.
- 7.【答案】C

【详解】 $y = \log_{\frac{1}{2}} u$, $u = -x^2 + 4x + 12$. 令 $u = -x^2 + 4x + 12 > 0$, 得-2 < x < 6. ∴ $x \in (-2, 2)$ 时, $u = -x^2 + 4x + 12$ 为增函数,

$$f(x)_{min} = -\frac{1}{4}, f(x)_{max} = 2.$$

第09天 函数经典例题(1)

1.【答案】C

【详解】由反函数的图象过点(1,2),则知原函数的图象过点(2,1),得 $\begin{cases} \log_a b = 0 \\ \log_a (2+b) = 1 \end{cases}$,则 b=1, a=3, a+b=4. 【点评】本题考查原函数和反函数图像关于v = x对称,即原函数过点(a, b),则反函数过 (*b*, *a*).

2.【答案】B

【**详解】**由
$$y = \frac{x-2}{2x-1}$$
, 得 $x = \frac{y-2}{2y-1} (y \neq \frac{1}{2})$, 即反函数为 $y = \frac{x-2}{2x-1} (x \neq \frac{1}{2})$.

【点评】本题考查了求反函数的步骤:反解、改写、求定义域.

3.【答案】A

【详解】显然 $f(2) = 2^2 + 2 - 2 = 4$, 得 $\frac{1}{f(2)} = \frac{1}{4}$, $f(\frac{1}{f(2)}) = f(\frac{1}{4}) = 1 - \frac{1}{16} = \frac{15}{16}$.

【点评】本题考查分段函数的求值的方法.

4.【答案】C

【详解】由对数运算法则 $x = \log_a \sqrt{6}$, $y = \log_a \sqrt{5}$, $z = \log_a \sqrt{7}$, 而 0 < a < 1, 函数 $y = \log_a x$ 是减函数, $\sqrt{7} > \sqrt{6} > \sqrt{5}$, $\therefore v > x > z$.

【点评】本题考查对数函数的单调性及基本运算公式.

- 5.【答案】A
 - 【详解】据题设, $f(x) = \frac{1}{x} \pm (0, +\infty)$ 上单调递减. COM 【点评】本题考查函数的单调性的定义.

【答案】[3, +∞) **咨询款线:** [$x - 2 | -1 \ge 0$ [$x \ge 3$, $x \le 1$ $x \ge 3$, $x \le 1$ $x \ge 3$, $x \le 1$ $x \ge 1$ $x \ge 3$, $x \le 1$ $x \ge 2$ $x \ge 1$ $x \ge 3$, $x \ge 3$, $x \le 1$ $x \ge 2$ $x \ge 1$ $x \ge 3$, $x \ge 3$, $x \ge 3$, $x \ge 1$ $x \ge 2$ $x \ge 1$ $x \ge 3$, $x \ge$ 6.【答案】[3, +∞)

即 $x \ge 3$.

【点评】本题考查解绝对值不等式,对数不等式,不等式交并的运算.

7.【答案】-2

$$[#M] \log_{\sqrt{2}+1} (3-2\sqrt{2}) = \log_{\sqrt{2}+1} \frac{1}{3+2\sqrt{2}} = \log_{\sqrt{2}+1} \frac{1}{(\sqrt{2}+1)^2} = \log_{\sqrt{2}+1} (\sqrt{2}+1)^{-2} = -2.$$

【点评】本题考查对数的运算.

8.【答案】 $f(x) = -2x^2 + 4$

【详解】函数 $f(x) = (x+a)(bx+2a) = bx^2 + (2a+ab)x + 2a^2$;

而函数是偶函数,则 $2a + ab = 0 \Leftrightarrow a = 0$ 或b = -2. 当a = 0时, $f(x) = bx^2$,不能满足它的值域为 $(-\infty, 4]$,

于是b=-2,而该二次函数为 $f(x)=-2x^2+2a^2 \le 2a^2$,即最大值 $2a^2=4$,该函数的解析式

为 $f(x) = -2x^2 + 4$.

【**点评】**注意由 2*a* + *ab* = 0 不能立即得出 *b* = -2,必须经过讨论排除 *a* = 0. 9.【**答案**】[0,1)

【**详解**】要使 $g(x) = \frac{f(2x)}{x-1}$ 有意义,必须 $\begin{cases} 0 \le 2x \le 2\\ x-1 \ne 0 \end{cases}$,即 $0 \le x < 1$.

【**点评**】本题考查抽象函数的定义域. 要点: *f*(*x*)中的*x*与*f*(2*x*)中的2*x*范围相同. 10.【答案】-1

【**详解**】设
$$t = 3^x$$
,则原方程化作 $\frac{1+\frac{1}{t}}{1+t} = 3$ 整理得 $3t^2 + 2t - 1 = 0 \Leftrightarrow t = \frac{1}{3}$,或 $t = -1$ (舍去)即

$$3^{x} = \frac{1}{3} = 3^{-1}$$
 所以 $x = -1$.

【点评】本题考查利用换元法解指数方程.

11.【详解】

原方程变形为 $\log_3(3^x - 1)\log_3[\frac{1}{3} \cdot (3^x - 1)] = 2$, $\log_3(3^x - 1)[\log_3(3^x - 1) - 1] = 2$, 即 $[\log_3(3^x - 1)]^2 - \log_3(3^x - 1) - 2 = 0$, 设 $y = \log_3(3^x - 1)$, 原方程可化为: $y^2 - y - 2 = 0$, 解得 y = 1 或 y = 2, 即 $\log_3(3^x - 1) = -1$, 或 $\log_3(3^x - 1) = 2$, 即 $3^x - 1 = 3^{-1} = \frac{1}{3}$ 或 $3^x - 1 = 3^2 = 9$ 于是 $3^x = \frac{4}{3}$, 或 $3^x = 10$, 解得 $x = \log_3 \frac{4}{3} = \log_3 4 - 1$ 或 $x = \log_3 10$, 经检验他们都是原方程的解.

所以原方程的解集为 $\{x \mid x = \log_3 4 - 1$ 或 $x = \log_3 10\}$.

【点评】本题涉及指数对数运算、解一元二次方程、指数方程、对数方程,重点考查换元解 对数方程.

12. 【**详解】**原方程化作 $5^{x^2+x-0.5} = 5^{\frac{1}{4}} \Leftrightarrow x^2 + x - 0.5 = \frac{1}{4} \Leftrightarrow 4x^2 + 4x - 3 = 0$

:
$$x = \frac{1}{2}$$
 或 $x = -\frac{3}{2}$. : 原方程的解集为 { $\frac{1}{2}$, $-\frac{3}{2}$ }

【点评】在代数中,式子的恒等变形能力很重要.

1.【答案】C 【详解】: $\tan 70^\circ > \tan 45^\circ = 1$, $\therefore a = \log_1 \tan 70^\circ < \log_1 \tan 45^\circ = 0$, $\because \sin 25^{\circ} > \sin 30^{\circ} = \frac{1}{2}, \quad \therefore a = \log_{\frac{1}{2}} \sin 25^{\circ} > \log_{\frac{1}{2}} \frac{1}{2} = 1, \quad \overrightarrow{\text{fff}} \ 0 < c = (\frac{1}{2})^{\cos 25^{\circ}} < (\frac{1}{2})^{0} = 1,$ $\therefore a < c < b$. 【点评】考查利用指数、对数函数、三角函数单调性比较大小,涉及特殊角三角函数值. 2.【答案】B 【详解】函数 $y = \log_a x$ 的反函数为 $y = a^x$, $y = \log_a \frac{1}{x}$ 即 $y = -\log_a x$ 的反函数为 $y = a^{-x}$, :图象关于 v 轴对称. 【点评】考查反函数的求法. 3.【答案】D 【详解】 $1 = 2^{0} < a = 2^{0.3} < 2^{1} = 2$, $0 < b = 0.3^{2} < 1$, $c = \log_{a}(x^{2} + 3) > \log_{a} x^{2} = 2$, ∴ b < a < c. 【点评】考查利用指数、对数单调性比较大小. 4. 【答案】A 【详解】 易知 $a^2 - 2a + 3 = (a - 1)^2 + 2 \ge 2$: 偶函数 f(x) 在[0, +∞)上递减: $f(-2) = f(2) \ge f(a^2 - 2a + 3)$ 【点评】考查利用函数的单调性比较大小. 5.【答案】D 【详解】由 f(x)是偶函数,可知 f(x)的图象关于 y 轴对称,由 f(x) = f(2-x)可得 f(x)的图 象关于直线 $x = \frac{x+2-x}{2} = 1$ 对称, JUNKAO.COM 3810115611 画出函数 f(x) 的图象如图, 由图象可知 f(x) 在区间 [-2, -1] 上是增函数, 区间 [3, 4] 上是 减函数. 【点评】考查函数的单调性和奇偶性. 6.【答案】² 【详解】 $f^{-1}(x) = 8 \Leftrightarrow f(8) = x$, 所以 $x = \log_3(8+1) = 2$. 【点评】本题考查反函数的求法: $f^{-1}(x) = 8 \Leftrightarrow f(8) = x$.

7.【答案】 $\frac{1}{2}$

【详解】: $f(x) = \frac{1}{2^x - 1} + a$ 是奇函数, : f(-x) = -f(x), 即 $\frac{1}{2^{-x} - 1} + a = -(\frac{1}{2^x - 1} + a)$, $\therefore \frac{2^x}{1-2^x} + \frac{1}{2^x-1} = -2a \Leftrightarrow -1 = -2a \;, \quad \therefore a = \frac{1}{2} \;.$ 【点评】本题考查奇函数的判定(f(-x) = -f(x)),亦可用特殊值法. 8.【答案】[0,+∞) 【详解】由 $\varphi(x) = e^x \Rightarrow \varphi^{-1}(x) = \ln x$: $g\{\varphi^{-1}[f(x)]\} = g\{\varphi^{-1}(x+1)\} = g[\ln(x+1)] = \sqrt{\ln(x+1)}$ 定义域满足: $\ln(x+1) \ge 0 \Leftrightarrow x+1 \ge 1 \Leftrightarrow x \ge 0$: 定义域是 $[0, +\infty)$. 【点评】本题涉及求定义域,解对数不等式,反函数求法.重点考查复合函数的求法. 9.【答案】2 【详解】 $\begin{cases} f(0) = 2\\ f(-1) = 3 \end{cases} \Leftrightarrow \begin{cases} 1+b=2\\ 1\\ -+b=3 \end{cases} \Leftrightarrow \begin{cases} b=1\\ a=\frac{1}{2} \\ \vdots \\ f(x) = \begin{cases} \log_3 x, x>0\\ (\frac{1}{2})^x+1, x \leq 0 \end{cases}$ $f[f(-3)] = f(9) = \log_2 9 = 2$ 【点评】考查利用指数函数和对数函数. 10.【答案】 [5, +∞) 【详解】 $(x^2 + \frac{1}{2r})^6$ 展开式的中间项为第四项,故 $f(x) = C_6^3 (x^2)^3 (\frac{1}{2r})^3 = \frac{5}{2} x^3$,由题意 $f(x) \leq mx$ 在区间[$\frac{\sqrt{2}}{2}$, $\sqrt{2}$]上恒成立, 即 $\frac{5}{2}x^3 - mx = (\frac{5}{2}x^2 - m) x \leq 0$ 在区间[$\frac{\sqrt{2}}{2}$, $\sqrt{2}$]上恒 成立,注意到x > 0,故 $\frac{5}{2}x^2 - m \le 0$ 区间[$\frac{\sqrt{2}}{2}$, $\sqrt{2}$]上恒成立,因此 $m \ge \frac{5}{2}x^2$ 在区间 $\left[\frac{\sqrt{2}}{2}, \sqrt{2}\right]$ 上恒成立,从而 $m \ge \left(\frac{5}{2}x^2\right)_{max} = 5$ (当 $x = \sqrt{2}$ 时取最大值),故m的取值范围为 $[5, +\infty).$

【点评】考查二次函数的最值.

11.【答案】 $\frac{3}{4}$

【详解】由条件知:
$$\begin{cases} a+b=\sqrt{10}\\ ab=2 \end{cases}$$
 : $a^2-ab+b^2=(a+b)^2-3ab=10-6=4$.
 $|a-b|=\sqrt{(a-b)^2}=\sqrt{(a+b)^2-4ab}=\sqrt{10-8}=\sqrt{2}$.
 $\log_4\frac{a^2-ab+b^2}{|a-b|}=\log_4\frac{4}{\sqrt{2}}=1-\log_4\sqrt{2}=1-\frac{1}{4}=\frac{3}{4}$.

【点评】考查对数函数的运算.

12. 【**详解**】原方程化作1g(8+2^{x+1})=2x(1g10-1g5)=2x1g2=1g2^{2x}:8+2^{x+1}=2^{2x} 令 2^x = y

所以 $y^2 - 2y - 8 = 0$ 解得 y = -2 和 y = 4 **:** $2^x = -2$ (无解) $2^x = 4$ **:** x = 2

代入原方程检验知, x = 2 是原方程的根. 【点评】本题涉及对数运算,一元二次方程,指数方程.重点考查对数方程的解法.