军考突破

崔爱功 主编

图书在版编目（CIP）数据

军考突破．数学分册／崔爱功主编．－－北京：中
国建材工业出版社，2013．10
ISBN 978－7－5160－0387－9
I．（1）军… II．（1）崔… III．（1）数学课一军事院校一人学考试一自学参考资料 IV．（1）E251．3（2）G723．4

中国版本图书馆CIP数据核字（2013）第024850号

版权声明

中国建材工业出版社对本丛书享有专有出版权。本丛书著作权属于崔爱功所有，根据《中华人民共和国著作权法》，任何未经许可复制，销售本丛书全部或部分内容的行为人，均将承担相应法律责任。

北京崔爱功和他的朋友们教育科技有限公司为本丛书销售的唯一指定代理销售单位，中国建材工业出版社未授权其他任何单位或个人销售本丛书。

官方网站：www．junkao．com
淘宝店铺：http：／／junxiaoziliao．taobao．com
购书热线： 13810115611 （微信）
Q Q 咨询： 33869167

军考突破——数学分册

崔爱功 主编

出版发行：中团速林工出出版社
地 址：北京市西城区车公庄大街6号
邮 编：100044
经 销：北京崔爱功和他的朋友们教育科技有限公司
印 刷：廊坊市海诚彩印有限公司
开 本： $787 \mathrm{~mm} \times 1092 \mathrm{~mm} \quad 1 / 16$
印 张： 21.25
字 数：556千字
版 次：2013年10月第1版
印 次：2023年2月第1次
定 价：590．00元（全六册）
本社网址：www．jccbs．com．cn
本书如出现印装质量问题，由印刷厂负责调换。

序 言

很多战士和家长们，想进一步了解崔爱功主编的《军考突破》的特点，下面做简要介绍。这是极具原创特色的一套备考用书，注重实用性，系统性和指导性，选用该书必将给战士们备考带来很大帮助。本书与其它同类资料的明显区别，主要在于如下几点：

第一，在介绍每个知识点或考点时，不照搬，不复制，不拼凑，而是各科教师用心结合实际的军考教学实践，用通俗易懂的方式去编排，讲解。这种符合逻辑，便于自学的科学讲解方式，贯穿始终，小到定义公式，大到题型与方法，为战士们进行高效复习指明了方向。

第二，紧跟在每个考点后面的例题示范与演练，首先是选取最简易的考点运用（往往是直接运用，这样便于理解），然后才是增加例题难度与广度（这样便于拓宽，加深）。另外，我们把近 6～10 年来的军考真题，逐一融进对应考点的后面，且配以详解和点评，既作为对应考点的例题，又提示了其重要性和考察方式。

第三，每章后面有＂突破训练题组＂，里面每道题都是精心设计的军考常考题型，题目由小到大，难度从低到高，不光是练习，也极具考试的针对性。

崔爱功主编的《军考突破》，是北京崔爱功军考教学团队呈现给全国考生的一套代表性作品，它融入了崔爱功军考教学团队多年来对军考教学的深刻体会，以及反复认真地推敲斟酌。由于多数士兵考生文化课基础薄弱，这套资料也全面弥补了《军考教材》在讲解上的局限，会帮助不同层次的考生去高效复习与提高。

我们对本丛书进行了系统的编，审，校工作，但是由于内容多，学科面广，难免出现个别疏漏之处，我们真诚欢迎广大士兵考生来电指出，帮助改进。

作为全国最早，专业研究军考的教学团队，一直以来，被很多人关注，模仿甚至抄袭着，但是我们相信，只要真正投入精力去用心教学和用心编写，就会始终处于领先位置。始于＂教学＂，成于＂教育＂，中国军考教育需要这样的人；我们这个团队，正在一步一个脚印地朝着教育这个方向而继续努力！

说 明

为了便于战士们自学，本丛书为所有考点或知识点进行了系统编号，下面进行简要说明。

一，书中凡是属于知识点或考点的内容，均有灰色底纹（图片与表格除外）。
二，每个知识点或考点都对应一个编号（语文除外），一般采用＂三级编号＂形式，特殊情况下采用＂四级编号＂形式。例如，＂2－5－6＂为三级编号，含义是对应科目的《军考突破》中 ＂第二章，第五节的第六个考点＂。再如，＂2－1－3－6＂为四级编号，含义是对应科目的《军考突破》中＂第二章，第一节，第三个考点下的第六个知识＂。

三，为了便于战士们及时查找和弥补自己的知识漏洞，我们在多数题目的＂点评＂内容里，也加入了该题所涉及知识点或考点的编号。

军考复习指导

源自＂北京崔爱功军考团队＂多年来培训战士考学的成功方案总结作者：崔爱功

一，军考备考，越早越好。

备考时间是参加部队考学的一个重要竞争力，不多阐述。

二，突破障碍，建立根基。

这是一个万事万物通用的哲理。战士们在学习过程中的最大障碍，就是不能搭建好完整的知识系统，所以才会衍生出种种难题。在身边无师的情况下，自通是困难的，所以战士们需要一种如同教师授课那样的好资料，＂崔爱功军考教学团队＂已经帮战士们解决了这个难题。

目前，比其他教材教辅在考点，例题，训练题等方面，讲解得更有效，更细致透彻，更明确考点，更利于自学的，就是《崔爱功军考突破》，这是每位战士必备的军考复习资料。

三，知错必改，改至必会。

首先，你要认识到只有建立了正确的学习方案，才会有效率可言；然后，你要落实到每次的学习过程中，才能加大成功的筹码。从一开始，就培养好习惯，这是我们在多年来进行一对一辅导战士的过程中不断验证的实用方法，希望大家不论用哪一本书学习，都要严格遵循下面的操作方法。
（1）任何学习的过程，都是在不断地＂发现问题，解决问题，基于量变，促成质变＂。
（2）准备一支黑笔，一支红笔，一支铅笔（橡皮），一个能每天装在衣袋的日常记录本，多个做题本与改错本。
（1）黑笔用来做题，以及标注已经会做，且无需进行第二遍的题。自己做过的每道题，必须留下痕迹。比如，对于例题，做完后如果正确，可以在题干上打个对勾；对于选择题，填空题，做完后如果正确，要写上答案；对于解答题，做完后如果正确，要留下过程或者打勾；等等。
（2）红笔用来标注错误，以及做记号。凡是自己学不懂的知识点，一律用红笔打问号（解决后，勾掉问号）；凡是第一次做错的题，一律用红笔改正（有需要时，写明出错原因）；凡是不会做的题，一律用红笔在题号上画个圈。
（3）铅笔用来作图，橡皮用来擦改，这是考试要求，且不伤原图。
（4）日常记录本用来把发现的问题及时记下，而后解决（解决后，勾掉）。在刻苦学习的整个过程中，必然伴随着大量的或大或小的问题，此时不记，过后则忘。
（5）做题本用来书写解题过程，默写背记内容。战士们参加的考试，都是考查反映在卷面上的功夫，所以必须勤动笔，学习往往是看无效，动笔有效。
（6）改错本用来改正那些自认为重要的错题，要写过程。运用改错本，日积月累，既能稳步提高能力，又利于归纳总结。
（3）所有标注的目的只有一个，就是让自己心知肚明。那些已经学会的，再做就是浪费时间；那些有错误，有疑问的，不尽快想办法解决就是隐患。在日后复习时，哪些不需再做，哪些需重做，甚至哪些需反复做，要做到一目了然。

其实，上面所说的也是一个人做事的规划问题。所以，有的人进步慢，有的人进步快。进步慢的人，重要因素就是反复做无用功，不得法则慢；进步快的人，重要因素就是一步一个脚印，得法则快。再次提醒大家，千万不要认为上面这些方式给学习带来了麻烦，这些才是正确有效的极佳方式，必将为你节省大量的宝贵时间！

四，明确方案，各科击破。

（1）理科的复习方案：
（1）首先要突破知识障碍，明确考查方向，为进行系统训练建立根基。我们出版发行的《崔爱功军考突破》，帮战士们解决了自学的难题。
（2）抓住那些考试原题，方法就是争取全做会。多年来，《军考教材》上面的某些题目，就是在给战士们送分，白送的分一定要拿到手；但要注意，真正的竞争差距不在那几道题上。
（3）系统训练，天道酬勤，能者居上。军考选拔的是那些能力拔尖的人才，那些人的能力是靠练出来的。我们出版发行的多种配套基础，模拟，真题详解汇编等针对性资料，帮战士们解决了材料不足的难题。
（4）熟记理科的所有公式，且要达到能够运用的水平。有些公式无需理解，背下来会用就可以；有些公式必须理解，不理解就不会用。
（5）复习数学，物理，化学等的具体方法，详见各科复习指导。
（2）文科的复习方案：
（1）突破知识障碍方面，与理科同。
（2）抓住考试原题方面，与理科同。
（3）系统训练方面，与理科同。
（4）学习文科的一个难题就是背记。在这个过程中，一方面要做好自我监督，自我检查；另一方面要下足功夫，看了不行你就读，读了不行你就写。总之，该背的就要背下来。
（5）复习语文，英语，政治，历史，地理，军政等的具体方法，详见各科复习指导。

五，无路可走，唯有努力！

非凡的成就，全靠最平凡的劳动酿成。参加军考，就不要心存侥幸，懒散安逸，更不要心存走关系，考场作弊等幻想，这些都会害了你；相反，你必须勤奋刻苦，不遗余力，就算咬破牙也要坚持下去，考试最终靠自己。

人生在世，勇敢一些，豁达一些，既要建立必胜的信心，又要具备不怕失败的勇气，这样的你，必将成功！

目 录

第一章 集合与简易逻辑 － 1
第一节 集合的概念与运算 2
第二节 简易逻辑 10
第二章 函 数 20
第一节 函数的基本概念 21
第二节 复习一次函数，反比例函数与二次函数 29
第三节 指数函数 36
第四节 对数函数 40
第五节 幂函数 47
第六节 函数的性质及应用 50
第三章 数 列 81
第一节 数列的概念 82
第二节 等差数列 83
第三节 等比数列 90
第四节 求数列的通项公式或前 n 项和的经典方法 97
第四章 三角函数 115
第一节 任意角的三角函数 116
第二节 两角和与差的三角函数 122
第三节 三角函数的图象与性质 128
第四节 已知三角函数值求角（附 录） 136
第五节 解三角形 138
第五章 向量及其应用 154
第一节 平面向量及其应用 155
第二节 空间向量及其应用 166
第六章 不等式 178
第一节 不等式的性质 179
第二节 不等式证明的基本方法 182
第三节 不等式的解法 184
第四节 二元一次不等式（组）与简单的线性规划问题 193
第七章 立体几何 204
第一节 点，线，面的位置关系概述 205
第二节 线，面的特殊位置关系（证明题型） 207
第三节 点，线，面的一般位置关系（计算题型） 220
第四节 简单几何体 241
第五节 柱体，锥体，台体的表面积与体积 252
第六节 空间几何体的三视图与直观图 253
第八章 直线和圆的方程 271
第一节 直 线 272
第二节 圆，曲线与方程 278
第三节 空间直角坐标系 285
第九章 圆锥曲线 295
第一节 椭 圆 296
第二节 双曲线 301
第三节 抛物线 307
第四节 圆锥曲线综合题型 310
第十章 排列组合与二项式定理 337
第一节 排列组合 338
第二节 二项式定理 347
第十一章 概率与统计 360
第一节 概 率 361
第二节 概率与统计 372
第十二章 推理与证明 391
第一节 推理与证明 392
第二节 数学归纳法 395
第十三章 导 数 403
第一节 数列的极限 404
第二节 函数的极限 409
第三节 函数的连续性 413
第四节 导数的概念与求导法则 416
第五节 导数的应用 420
第十四章 复 数 444
第一节 复数的概念 445
第二节 复数的四则运算 446

第一章 集合与简易逻辑

知 识 提 纲	第一节 集合的概念与运算	01 知识点 集合的基本概念
		02 知识点 集合的表示方法
		03 知识点 集合的分类
		04 知识点 几种常见数集的专用符号
		05 知识点集合与元素的关系
		06 考点 集合与集合的关系
		07 考点集合的三种运算
	第二节 简易逻辑	08 知识点 命题
		09 知识点 逻辑联结词
		10 考点 充分条件和必要条件
		11 知识点 全称命题和特称命题

第一节 集合的概念与运算

1－1－1 知识点 集合的基本概念

1．集合：把一些对象放在一起就构成一个集合，简称集．（一般用大写字母来代表一个集合，如集合 A ，集合 M ，集合 U 等）。集合中的对象称为元素（一般用小写字母来代表一个元素，如元素 a ，元素 b ，元素 c 等）。

例如，由六个元素 $a, b, c, 1,2,3$ 构成的集合为：$M=\{a, b, c, 1,2,3\}$ ．
2．集合中的元素有三个特性：确定性，互异性，无序性．
（1）确定性：给定一个集合，任何一个元素要么在这个集合内，要么不在这个集合内，不能模棱两可。

例如，下列对象（1）世界上的高山，不能构成集合；（2）世界上的最高的山．能构成集合；（3）1到 10 之间的偶数．能构成集合．
（2）互异性：集合中任意两个元素都不相同（即集合中的元素不能重复出现）．

例如，集合 $A=\{1,1,2,2\}$ 这种表示方法是错误的，应为 $A=\{1,2\}$ ．
（3）无序性：集合中元素的排列顺序是任意的．

例如，集合 $A=\{1,2,3\}=\{3,2,1\}=\{3,1,2\}$ ．

1－1－2 知识点 集合的表示方法

1．列举法 把集合中的元素一一列举出来，写在大括号内．

例如，（1）集合 $A=\{1,2,3,4\}$ ，集合 $B=\{$ 太阳，地球，火星 $\}$ 。
（2）由方程 $x^{2}=x$ 的所有解组成的集合：$\{0,1\}$ 。
（3）由 1 至 20 以内的所有素数组成的集合：$\{2,3,5,7,11,13,17,19\}$ ．

2．描述法

格式为 $A=\{x \mid P(x), x \in I\}$ 。表示集合 A 中的元素 x 都属于集合 I ，且都具有性质 $P(x)$ ．

例如，（1）不等式 $x-3>2$ 的解集可以表示为：$\{x \mid x>5\}$ 。（要看清它的元素是数）
（2）集合 $A=\left\{y \mid y=x^{2}+1, x \in R\right\}$ ，表示由函数 $y=x^{2}+1$ 的函数值构成的集合，即 $A=\{y \mid y \geqslant 1\}$ 。（要看清它的元素是数，可理解成 y 值或其图象上所有点的纵坐标）
（3）集合 $\left\{(x, y) \mid y=x^{2}, x \in R\right\}$ ，表示抛物线 $y=x^{2}$ 上的所有的点构成的集合．（要看清它的元素是点）

3．文氏图（也叫韦恩图）

用一条封闭曲线的内部来表示一个集合。

例如，把集合 $A=\{1,2,7\}, B=\{2,5\}, U=\{1,2,3,4,5,6,7\}$ ，用文氏图表示如下：

U					
		A		2	
1		2	5	B	
		7			

4．区间法（注意：区间法只能表示由实数构成的集合）
（1）开区间：例如 $\{x \mid a<x<b\}=(a, b)$ ．
（2）闭区间：例如 $\{x \mid a \leqslant x \leqslant b\}=[a, b]$ ．
（3）半开半闭区间：例如 $\{x \mid a<x \leqslant b\}=(a, b] ;\{x \mid a \leqslant x<b\}=[a, b)$ ．
（4）$\{x \mid x \geqslant a\}=[a,+\infty)$ ；$\{x \mid x>a\}=(a,+\infty)$ ．
（5）$\{x \mid x \leqslant a\}=(-\infty, a]$ ；$\{x \mid x<a\}=(-\infty, a)$ ．
（6）$\{x \mid x \in \mathbf{R}\}=(-\infty,+\infty)$ ．

例如，用区间法表示集合

$$
\begin{array}{ll}
\{x \mid 1<x<2\}=(1,2) ; & \{x \mid 1 \leqslant x \leqslant 2\}=[1,2] ; \\
\{x \mid 1 \leqslant x<2\}=[1,2) ; & \{x \mid 1<x \leqslant 2\}=(1,2] ; \\
\{x \mid x \geqslant 1\}=[1,+\infty) ; & \{x \mid x>2\}=(2,+\infty) ; \\
\{x \mid x \leqslant 1\}=(-\infty, 1] ; & \{x \mid x<2\}=(-\infty, 2) .
\end{array}
$$

1－1－3 知识点 集合的分类

1．有限集：含有有限个元素的集合。
例如，集合 $A=\left\{x \mid x^{2}-1=0\right\}$ ，化简后得到一个含有两个元素的集合，即 $A=\{-1,1\}$ ．
例 1 （2020 军考真题）已知集合 $A=\left\{(x, y) \mid x^{2}+y^{2} \leqslant 3, x \in \mathbf{Z}, y \in \mathbf{Z}\right\}$ ，则 A 中元素的个数为（ ）
A． 9
B． 8
C． 5
D． 4

【详解】由条件可知 A 中的元素有 $(0,0),(1,0),(-1,0),(0,1),(-1,1),(1,1)$ ， $(0,-1),(1,-1),(-1,-1)$ 共 9 个．故选 A．

2．无限集：含有无限个元素的集合．

例如，集合 $B=\{x \mid x-3>2\}$ ，化简后得到一个含有无穷多个元素的集合，即 $B=\{x \mid x>5\}$ ．
3．空集：不含任何元素的集合，记作 \varnothing ．

例如，集合 $C=\left\{x \in \mathbf{R} \mid x^{2}+1=0\right\}$ ，而方程 $x^{2}+1=0$ 无实数解，故集合 C 内不含任何元素，记作空集 \varnothing 。

注意：空集的专用符号是 \varnothing 。用 $\{\varnothing\}$ ，$\{$ 空集 $\}, ~\{0\}$ 来表示空集都是错误的（其中，$\{0\}$ 表示含有一个元素 0 的集合）。

1－1－4 知识点 几种常见数集的专用符号

1．自然数集（非负整数集）：全体非负整数的集合，记作 \mathbf{N} ．（注意从 0 开始）

2．正整数集：非负整数集内排除 0 的集，记作 \mathbf{N}^{*} 或 \mathbf{N}_{+}。（注意从 1 开始）
3．整数集：全体整数的集合，记作 \mathbf{Z} ．（包括负整数， 0 与正整数）
4．有理数集：全体有理数的集合，记作 \mathbf{Q} ．（即整数，有限小数与无限循环小数）
5．实数集：全体实数的集合，记作 \mathbf{R} 。
6．无理数：即无限不循环小数，常见的有 $\pi(\pi \approx 3.14), ~ e(e \approx 2.718), ~ \sqrt{2}, ~ \lg 3, ~ \sin 10^{\circ}$ 等．
上面常用数集之间的关系： $\mathbf{N}^{*}=\mathbf{N}_{+} \varsubsetneqq \mathbf{N} \varsubsetneqq \mathbf{Z} \varsubsetneqq \mathbf{Q} \varsubsetneqq \mathbf{R}$ 。
1－1－5 知识点 元素与集合的关系：只能是属于或者不属于的关系．若 a 是集合 A 的元素，则记作 $a \in A$ ；若 a 不是集合 A 的元素，则记作 $a \notin A$ ．

例如，若集合 $B=\{1,2,3,4,5\}$ ，则 $1 \in B, 2 \in B, 6 \notin B$ 。
例1 已知集合 $A=\{x \mid x(x-1)=0\}$ ，那么下列结论正确的是（ ）
A． $0 \in A$
B． $1 \notin A$
C．$-1 \in A$
D． $0 \notin A$

【详解】这种题先化简集合 A ，即 $A=\{0,1\}$ ，则 $0 \in A, 1 \in A$ ．故选 A．

1－1－6 考点 集合与集合的关系：子集，真子集，集合相等．
1－1－7 考点 子集：一般地，对于两个集合 A 与 B ，如果 A 中的任何一个元素都是 B 的元素，那么集合 A 叫做集合 B 的子集．记作：$A \subseteq B$ 或 $B \supseteq A$ 。读作：A 包含于 B 或 B 包含 A ．

例如，集合 $\{1,2,3\} \subseteq\{1,2,3,4\}$ ，或写成集合 $\{1,2,3,4\} \supseteq\{1,2,3\}$ ．

当集合 A 不包含于集合 B 时，记作：$A \nsubseteq B$ ．读作：A 不包含于 B 或 B 不包含 A ．

例如，集合 $\{1,2,3\} \nsubseteq$ 集合 $\{2,3,4,5\}$ ．
1．子集的文氏图表示：如下图的 $A \subseteq B$

2．子集的性质：

（1）$A \subseteq A$（任何一个集合是它本身的子集）．
（2）$\varnothing \subseteq A$（空集是任何集合的子集）。
（3）$\varnothing \varsubsetneqq A$（ A 是非空集合；空集是任何非空集合的真子集）．
（4）一个含有 n 个元素的集合，它的子集个数一定是 2^{n} ．

例如，集合 $\{1,2,3\} \subseteq\{1,2,3\}$ 。集合 $\{1,2,3\}$ 的所有子集的个数是 $2^{3}=8$ 个．
例 1 已知集合 $A=\{x \mid x<3\}, B=\{x \mid x<a\}$ ，且 $B \subseteq A$ ，则实数 a 的取值范围是（ ）
A．$a<3$
B．$a>3$
C．$a \leqslant 3$
D．$a \geqslant 3$

【详解】
 ，故选 C．

【点评】考查子集的概念，用数轴表示直观且清晰．

例 2 （2016 军考真题）已知集合 $A=\{1, a\}, B=\{1,2,3\}$ ，则＂$a=3$＂是＂$A \subseteq B$＂的 （ ）
A．充分不必要条件
B．必要不充分条件
C．充分必要条件
D．既不充分也不必要条件

【详解】 $\because a=3 \Rightarrow A \subseteq B$ ，但 $A \subseteq B \nRightarrow a=3$ ，所以＂$a=3$＂是＂$A \subseteq B$＂的充分不必要条件．故选 A．

【点评】考查子集与命题的充分性和必要性的判断．
例 3 （2018 军考真题）设集合 $S=\{a, b, c, d, e\}$ ，则包含元素 a, b 的 S 的子集共有 （ ）
A． 2 个
B． 3 个
C． 4 个
D． 8 个

【详解】满足条件的子集即除 a, b 外，c, d, e 三个元素取 0 个， 1 个， 2 个， 3 个，即 $C_{3}^{0}+C_{3}^{1}+C_{3}^{2}+C_{3}^{3}=8$ 个。故选 D．

例4 设集合 $A=\left\{x \mid x^{2} \leqslant 4\right\}, B=\{x \mid x-m<0\}$ ．若 $A \subseteq B$ ，则实数 m 的取值范围是 \qquad ．
【详解】 $A=\{x \mid-2 \leqslant x \leqslant 2\}, B=\{x \mid x<m\}$ ．若 $A \subseteq B$ ，则 $m>2$ ．故填 $(2,+\infty)$ ．
【点评】考查集合的子集概念，作这类题目要先对给定集合化简．

1－1－8 考点 真子集：如果集合 A 是 B 的子集，并且 B 中至少有一个元素不属于 A ，那么集合 A 叫做集合 B 的真子集，记作：$A \varsubsetneqq B$（或 $B \supsetneqq A$ ）读作＂A 真包含于 B＂或＂B 真包含 A＂。

例如，集合 $\{1,2\} \varsubsetneqq\{1,2,3\} . \mathbf{N} \varsubsetneqq \mathbf{Z}$ ；$\{$ 锐角三角形 $\} \varsubsetneqq\{$ 斜三角形 $\} \varsubsetneqq\{$ 三角形 $\}$ 。

1－1－9 知识点 集合相等：一般地，对于两个集合 A 与 B ，如果集合 A 的每一个元素都是集合 B 的元素，同时集合 B 的每一个元素都是集合 A 的元素，我们就说集合 A 等于集合 B ，记作 $A=B$ 。

例如，（1）若 $A=\{1,2,6\}, H=\{1,2,6\}$ ，那么就有 $A \subseteq H$ 且 $A \supseteq H$ ，即 $A=H$ 。
（2）若集合 $A=\{-1,1\}, B=\{1,-1\}$ ，则 $A=B$（即 A, B 的元素完全相同）．

集合与集合的关系只能是：

＂包含＂＂不包含＂，＂包含于＂＂不包含于＂，＂真包含＂＂真包含于＂，＂相等＂＂不相等＂等。即＂〇 $\supseteq ", ~ " \subseteq \nsubseteq ", ~ " \supsetneqq \varsubsetneqq ", ~ "=\neq "$ 等。

集合的三种运算：交集，并集，补集．

1－1－10 考点 交集
1．交集的定义：一般地，由属于集合 A 又属于集合 B 的所有元素构成的集合，叫做 A, B的交集。

记作 $A \cap B$ ，即 $A \cap B=\{x \mid x \in A$ 且 $x \in B\}$ 。
2．韦恩图表示集合 A 与 B 的交集：如下图的虚线部分

3．交集的性质：
（1）$A \cap B=B \cap A$ ；（2）$A \cap A=A$ ；（3）$A \cap \varnothing=\varnothing \cap A=\varnothing$ ；（4）$A \subseteq B \Leftrightarrow A \cap B=A$ ．

例如，（1）集合 $A=\{1,2,3\}$ ，集合 $B=\{2,3,4\}$ ，则 $A \cap B=\{2,3\}$ 。
（2）集合 $A=\{$ 等腰三角形 $\}, ~ B=\{$ 直角三角形 $\}$ ，则 $A \cap B=\{$ 等腰直角三角形 $\}$ ．
例 1 已知集合 $A=\{x \mid x>0\}, ~ B=\{x \mid x<4\}$ ，那么集合 $A \cap B$ 等于（ ）
A．\varnothing
B．$\{x \mid x>0\}$
C．$\{x \mid x<4\}$
D．$\{x \mid 0<x<4\}$

【详解】此类题可借助类似下面的数轴解决．可见，$A \cap B=\{0<x<4\}$ ．故选 D．

【点评】考查集合运算中的交集，用数轴表示直观且清晰。
例2 设集合 $A=\{x \mid 1<x<5\}, B=\{x \mid 2<x<6\}$ ，则 $A \cap B=$（）
A．$\{x \mid 1<x<2\}$
B．$\{x \mid 2<x<5\}$
C．$\{x \mid 5<x<6\}$
D．$\{x \mid 1<x<6\}$

【详解】如图，

故选 B．
【点评】考查集合的交集运算，注意数轴的运用．
例3（2010 军考真题）若集合 $A=\{x \mid-2 \leqslant x \leqslant 3\}, ~ B=\{x \mid x<-1$ 或 $x>4\}$ ，则 $A \cap B=(\quad)$
A．$\{x \mid x \leqslant 3$ 或 $x>4\}$
B．$\{x \mid-1<x \leqslant 3\}$
C．$\{x \mid 3 \leqslant x<4\}$
D．$\{x \mid-2 \leqslant x<-1\}$

【详解】 $A \cap B=\{x \mid-2 \leqslant x<-1\}$ ．

【点评】考查集合的交集运算，注意数轴的运用．
例 4 已知集合 $M=\left\{x \left\lvert\, \frac{x}{x-1}>2\right.\right\}, N=\{x \| 2 x-1 \mid<2\}$ ，则 $M \cap N$ 为（）
A．$\{x \mid 1<x<2\}$
B．\varnothing
C．$\left\{x \left\lvert\,-\frac{1}{2}<x<1\right.\right\}$
D．$\left\{x \left\lvert\, 1<x<\frac{3}{2}\right.\right\}$

【详解】 $\because M=\{x \mid 1<x<2\}, N=\left\{x \left\lvert\,-\frac{1}{2}<x<\frac{3}{2}\right.\right\}, \therefore M \cap N=\left\{x \left\lvert\, 1<x<\frac{3}{2}\right.\right\}$ ．故选 D．
【点评】本题涉及分式不等式，绝对值不等式，重点考查集合的交集运算。
例 5 （2008，2013 军考真题）已知集合 $P=\{x \mid x(x-1) \geqslant 0, x \in \mathbf{R}\}, Q=\left\{x \left\lvert\, \frac{1}{x-1}>0\right., x \in \mathbf{R}\right\}$ ，则 $P \cap Q$ 等于（ ）
A．\varnothing
B．$\{x \mid x \geqslant 1, x \in \mathbf{R}\}$
C．$\{x \mid x>1, x \in \mathbf{R}\}$
D．$\{x \mid x \geqslant 1$ 或 $x<0, x \in \mathbf{R}\}$

【详解】由 $x(x-1) \geqslant 0$ ，得 $x \geqslant 1$ 或 $x \leqslant 0$ ；由 $\frac{1}{x-1}>0$ ，得 $x>1$ ，即 $Q \subseteq P$ ， $\therefore P \cap Q=Q=\{x \mid x>1, x \in \mathbf{R}\}$ 。故选 C．
【点评】考查解不等式和集合的运算。
例 6 设集合 $M=\{(x, y) \mid x+y=4\}, N=\{(x, y) \mid x-y=2\}$ ，则集合 $M \cap N=(\quad)$
A．$\{3,1\}$
B．$(3,1)$
C．$\{(3,1)\}$
D．$\{x=3$ ，或 $y=1\}$

【详解】 $M \cap N=\left\{(x, y) \left\lvert\,\left\{\begin{array}{l}x+y=4 \\ x-y=2\end{array}\right\}=\left\{(x, y) \left\lvert\,\left\{\begin{array}{l}x=3 \\ y=1\end{array}\right\}=\{(3,1)\}\right.\right.\right.$ 。故选 C．\right.
【点评】考查直线交点，集合的交集，注意认准集合中的元素是什么．
例 7 （2016 军考真题）已知集合 $A=\{x \in \mathrm{R} \| x \mid<2\}, B=\left\{x \in \mathrm{R} \left\lvert\, \frac{1}{2}<2^{x}<5\right.\right\}$ ，则 $A \cap B=$ （ ）
A．$\{x \in \mathrm{R} \mid-2<x<2\}$
B．$\{x \in \mathrm{R} \mid-1<x<2\}$
C．$\left\{x \in \mathrm{R} \mid-2<x<\log _{2} 5\right\}$
D．$\left\{x \in \mathrm{R} \mid-1<x<\log _{2} 5\right\}$

【详解】 $\because A=\{x \in \mathbf{R} \| x \mid<2\}=\{x \mid-2<x<2\}, \quad B=\left\{x \in \mathbf{R} \left\lvert\, \frac{1}{2}<2^{x}<5\right.\right\}=\left\{x \mid 2^{-1}<2^{x}<2^{\log _{2} 5}\right\}$ $=\left\{x \mid-1<x<\log _{2} 5\right\}$ ，$\therefore A \cap B=\{x \in \mathrm{R} \mid-1<x<2\}$ ．故选 B．

【点评】本题考查集合的交集运算。
例 8 （2019 军考真题）已知集合 $A=\left\{x \mid x^{2}-x>0\right\}, B=\left\{x \mid \log _{2} x<0\right\}$ ，则（）
A．$A \cap B=\{x \mid x<0\}$
B．$A \cup B=\mathbf{R}$
C．$A \cap B=\varnothing$
D．$A \cup B=\{x \mid x>1\}$

【详解】 $A=\left\{x \mid x^{2}-x>0\right\}=\{x \mid x<0$ 或 $x>1\}, B=\left\{x \mid \log _{2} x<0\right\}=\{x \mid 0<x<1\}$
$\therefore A \cap B=\varnothing$ ．故选 C．
例 9 已知集合 $A=\{x \mid-1<x<5\}, B=\{x \mid x(x+2)<0\}$ ，则 $A \cap B=$ \qquad ．
【详解】 $B=\{x \mid-2<x<0\}, \therefore A \cap B=\{x \mid-1<x<0\}$ ．故填 $\{x \mid-1<x<0\}$ ．
【点评】考查集合的交集运算。
例10（2011 军考真题）若 $A=\{x \in \mathbf{R}| | x \mid<3\}, B=\left\{x \in \mathbf{R} \mid 2^{x}>1\right\}$ ，则 $A \cap B=$ \qquad ．
【详解】 $A=\{x \mid-3<x<3\}, B=\{x \mid x>0\}$ ，所以 $A \cap B=\{x \mid 0<x<3\}$ 。故填 $\{x \mid 0<x<3\}$ 。
【点评】本题涉及绝对值不等式，指数不等式的解法，重点考查集合的运算．
例 11 设集合 $A=\{x \mid x<m, x \in \mathbf{R}\}, B=\{x \| x-2 \mid<3, x \in \mathbf{R}\}$ ，若 $A \cap B=B$ ，则实数 m 的取值范围是 \qquad。
【详解】 $B=\{x \mid-1<x<5\}, A \cap B=B \Leftrightarrow B \subseteq A$ ，所以 $m \geqslant 5$ ．故填 $[5,+\infty)$ ．
【点评】本题涉及绝对值不等式的解法，重点考查集合的交集运算．

1－1－11 考点 并集

1．并集：由集合 $A, ~ B$ 的所有元素构成的集合，叫做 A 与 B 的并集，即 $A \cup B=\{x \mid x \in A$或 $x \in B\}$ 。

2．$A \cup B$ 的韦恩图表示：（如下图的虚线部分）

3．并集的性质：

（1）$A \cup B=B \cup A$ ；
（2）$A \cup A=A$ ；
（3）$A \cup \varnothing=\varnothing \cup A=A$ ；
（4）$A \cup B=B \Leftrightarrow A \subseteq B$ ．

例如，集合 $A=\{1,2,3\}$ ，集合 $B=\{2,3,4\}$
则 $A \cup B=\{1,2,3\} \cup\{2,3,4\}=\{1,2,3,4\}$ 。
例1 集合 $A=\{x \mid x \neq 1, x \in \mathbf{R}\}, B=(-\infty, 1) \bigcup(1,2) \bigcup(2,+\infty)$ ，则 $A \cup B$ 为（ ）
A．B
B．A
C． \mathbf{R}
D．无法判定

【详解】 $B \subseteq A, A \cup B=A$ ．故选 B ．
【点评】考查集合的并集运算。
例 2 已知集合 $A=\{x \mid x>1\}, ~ B=\{x \mid x<-1\}$ ，那么集合 $A \cup B$ 等于（ ）
A．\varnothing
B． \mathbf{R}
C．$\{x \mid-1<x<1\}$
D．$\{x \mid x>1$ ，或 $x<-1\}$

【详解】此类题可借助类似下面的草图解决．可见，$A \cup B=\{x \mid x>1$ ，或 $x<-1\}$ ．
故选 D．
【点评】考查集合运算中的并集，注意数轴的运用．
例3 已知集合 $M=\{0,1\}$ ，则满足 $M \cup N=\{0,1,2\}$ 的集合 N 的个数是（ ）
A． 2
B． 3
C． 4
D． 8

【详解】集合 N 中至少有元素 2 ，然后从 0,1 里要 0 个元素，要 1 个元素，要 2 个元素，共 4 种．故选 C．
【点评】考查集合的并集的概念，注意分类．
例 4 （2014 军考真题）已知集合 $P=\{-1,0,1\}, ~ Q=\{x \mid x=a b, a, b \in P$ 且 $a \neq b\}$ ，则 $P \bigcup Q$ 等于（ ）
A．$\{0,1\}$
B．$\{-1,0\}$
C．$\{-1,0,1\}$
D．$\{-1,1\}$

【详解】 $Q=\{-1,0\}$ ，则 $P \cup Q=\{-1,0,1\}$ ．故选 C．
【点评】考查集合的并集运算。
例5 设集合 $P=\left\{5, \log _{2}(a+3)\right\}$ ，集合 $Q=\{a, b\}$ ，若 $P \cap Q=\{2\}$ ，则 $P \cup Q=(\quad)$
A．$\{1,2,4\}$
B．$\{1,2,5\}$
C．$\{1,2,3\}$
D．$\{2,3,5\}$

【详解】由 $P \cap Q=\{2\}$ ，得 $2 \in P$ ，即 $\log _{2}(a+3)=2$ ，得 $a+3=4$ ，即 $a=1$ ．再由 $P \cap Q=\{2\}$得 $2 \in Q$ ，即 $b=2$ ，得 $P=\{5,2\}, Q=\{2,1\}$ ，即 $P \cup Q=\{1,2,5\}$ 。故选 B．

【点评】考查集合的交集，并集的运算．
例 6 （2017 军考真题）设集合 $A=\left\{y \mid y=2^{x}, x \in \mathbf{R}\right\}, B=\left\{x \mid x^{2}-1<0\right\}$ ，则 $A \cup B=(\quad)$
A．$(-1,1)$
B．$(0,1)$
C．$(-1,+\infty)$
D．$(0,+\infty)$

【详解】 $A=\left\{y \mid y=2^{x}, x \in \mathbf{R}\right\}=(0,+\infty), B=\left\{x \mid x^{2}-1<0\right\}=(-1,1)$ 则 $A \cup B=(-1,+\infty)$ ．故选 C．

【点评】这是典型的军考标配题目，入手容易，得分容易。

1－1－12 考点 补集与全集

1．全集：如果一个集合含有我们所研究问题中涉及的所有元素，那么就称这个集合为全集．通常记作 U ．例如，解方程时常把实数集 \mathbf{R} 当做全集 U ．

2．补集：设 U 是一个全集，A 是 U 的一个子集（即 $A \subseteq U$ ），由 U 中不属于 A 的所有元素构成的集合，叫做 A 在 U 中的补集。记作 $\complement_{U} A$ ，即 $\complement_{U} A=\{x \mid x \in U$ 且 $x \notin A\}$ 。

3．补集 $C_{U} A$ 的韦恩图表示：（即下图中的虚线部分）

4．补集的性质：$\complement_{U}\left(\complement_{U} A\right)=A$（说明：$\complement_{U} A$ 是对于给定的全集 U 而言，全集不同时，补集

也不同．）

例如，若 $U=\{1,2,3,4\}, A=\{1,2,3\}$ ，则 $\complement_{U} A=\{4\}, \complement_{U}\left(\complement_{U} A\right)=A=\{1,2,3\}$ 。
例1 集合 $U=\{0,1,2,3,4\}, A=\{1,2,3\}, B=\{2,4\}$ ，则 $\left(\complement_{U} A\right) \cup B=$（）
A．$\{1,2,4\}$
B．$\{2,3,4\}$
C．$\{0,2,4\}$
D．$\{0,2,3,4\}$

【详解】 $\complement_{U} A=\{0,4\}, B=\{2,4\}$ ，则 $\left(\complement_{U} A\right) \cup B=\{0,2,4\}$ ，故选 C．
【点评】考查集合的运算。
例2 设全集 $I=\{1,2,3,4,5\}$ ，集合 $A=\{1,2,3\}, B=\{2,3,4\}$ ，则 $C_{I}(A \cup B)=(\quad)$
A．$\{2,3\}$
B．$\{5\}$
C．$\{4,5\}$
D．$\{1,4,5\}$

【详解】 $A \cup B=\{1,2,3,4\}$ ，而 $I=\{1,2,3,4,5\}$ ，所以 $\complement_{I}(A \cup B)=\{5\}$ ．故选 B．
【点评】考查集合的运算。
例3 已知全集 $U=\mathbf{R}$ ，集合 $A=\left\{x \mid x^{2}<4\right\}, B=\left\{x \mid x^{2}-2 x>0\right\}$ ，则 $A \cap\left(\complement_{U} B\right)$ 等于（ ）
A．$(-\infty, 2)$
B．$(0,2)$
C．$[0,2)$
D．$[0,2]$

【详解】由 $x^{2}<4$ ，得 $-2<x<2$ ，即 $A=(-2,2)$ ，由 $x^{2}-2 x>0$ ，得 $x>2$ ，或 $x<0$ ，即 $\complement_{U} B=[0,2]$ ，得 $A \cap\left(\complement_{U} B\right)=[0,2)$ ．故选 C．

【点评】考查集合的交集，补集运算以及不等式的解法．
例 4 （2009 军考真题）设 \mathbf{R} 为实数集，若 A 为全体正实数的集合，$B=\{-2,-1,1,2\}$ ，则下列结论正确的是（ ）
A．$A \cap B=\{-2,-1\}$
B．$\left(\complement_{\mathrm{R}} A\right) \cup B=(-\infty, 0)$
C．$A \cup B=(0,+\infty)$
D．$\left(\complement_{\mathrm{R}} A\right) \cap B=\{-2,-1\}$

【详解】 $\because A=\{x \mid x>0\}, \complement_{\mathrm{R}} A=\{x \mid x \leqslant 0\}, \quad \therefore\left(\complement_{\mathrm{R}} A\right) \cap B=\{-2,-1\}$ ．故选 D．
【点评】考查集合的交，并，补运算。
例 5 （2012 军考真题）设全集 $U=\{x \in \mathbf{Z} \mid 0 \leqslant x \leqslant 5\}$ ，集合 $A=\{1,3\}, B=\left\{y \mid y=\log _{\sqrt{3}} x\right.$ ， $x \in A\}$ ，则集合 $\left(\complement_{U} A\right) \cap\left(\complement_{U} B\right)=(\quad)$
A．$\{0,2,4,5\}$
B．$\{0,4,5\}$
C．$\{2,4,5\}$
D．$\{4,5\}$

【详解】 $\because U=\{0,1,2,3,4,5\}, A=\{1,3\}, B=\{0,2\}$ ，
$\therefore \complement_{U} A=\{0,2,4,5\}, \complement_{U} B=\{1,3,4,5\}$ ．
$\therefore\left(\complement_{u} A\right) \cap\left(\complement_{U} B\right)=\{4,5\}$ ．故选 D．
【点评】考查集合的交，补运算。
例 6 设集合 $U=\{-2,-1,1,3,5\}$ ，集合 $A=\{-1,3\}$ ，那么 $\complement_{U} A=$ \qquad ．
【详解】由题，元素 $-2,1, ~ 5$ 属于集合 U ，不属于集合 A ，故 $C_{U} A=\{-2,1,5\}$ ．故填 $\{-2,1,5\}$ ．

【点评】考查集合运算中的全集和补集．

第二节 简易逻辑

1－2－1 知识点 命题

1．命题的概念：一般的，我们把用语言，符号或式子表达的，且能够判断真假（即对错）的陈述句叫做命题．判断结果为正确的语句，叫真命题；判断为错误的语句，叫假命题．

例如＂正实数大于 0 ＂是命题，且是真命题；＂一个三角形有 4 条边＂是命题，且是假命题．
例1 判断下列语句是不是命题：
（1）空集是任何集合的子集．
（2）指数函数是增函数吗？（不会的同学要学会指数函数再来判断）
（3）二次函数的图象是一条抛物线．（不会的同学要学会二次函数再来判断）
（4）偶函数的图象关于 y 轴对称．（不会的同学要学会函数奇偶性再来判断）
（5）$\sqrt{(-2)^{2}}=2$ ．
（6）若空间中两条直线不相交，则这两条直线平行．
（7）垂直于同一平面的两个平面平行。（不会的同学要学会立体几何再来判断）
【答案】1，3，4，5，6，7 是命题（1，3，4，5是真命题，6，7是假命题）； 2 不是命题．
2．命题的结构：＂若 p ，则 q＂是命题的常见形式，其中 p 叫做命题的条件，q 叫做命题的结论．

例 2 将下列命题改写成＂若 p ，则 q＂的形式，并判断真假．
（1）偶数能被 2 整除．
（2）奇函数的图象关于原点对称．（不会的同学要学会函数奇偶性再来判断）
【详解】（1）若一个数是偶数，则这个数能被 2 整除．
（是真命题）
（2）若一个函数是奇函数，则这个函数的图象关于原点对称．．．．．．．（是真命题）
【点评】考查对命题结构的理解．

3．四种命题

（1）原命题：任何一个命题，都可以看做是原命题（我们不妨把原命题记作＂若 p ，则 q＂）．
（2）逆命题：把一个命题的条件和结论调换位置，即变成它的逆命题（＂若 q ，则 p＂）．
（3）否命题：把一个命题的条件和结论分别否定，即变成它的否命题（＂若非 p ，则非 q＂）．
（4）逆否命题：把一个命题的条件和结论调换位置，再分别否定，即变成它的逆否命题（＂若非 q ，则非 p＂）。

例如，（1）若把一个命题＂若 p ，则 q＂看做原命题，则有
原命题：若 p ，则 q ；
逆命题：若 q ，则 p ；
否命题：若非 p ，则非 q ；
逆否命题：若非 q ，则非 p 。
（2）若把命题：＂若一个数是自然数，则它是整数＂看做原命题，则有
原命题：若一个数是自然数，则它是整数．（真）
逆命题：若一个数是整数，则它是自然数。（假．如 -1 是整数，但不是自然数）
否命题：若一个数不是自然数，则它不是整数．（假．如 -1 不是自然数，但它是整数）

逆否命题：若一个数不是整数，则它不是自然数．（真）

4．四种命题之间的相互关系：

若两个命题之间互为逆否命题，则它们是等价命题，即这两个命题同为真或同为假．若两个命题之间互为逆命题 或者互为否命题，则它们谁真谁假 没有关系。

例如，命题：＂若 $\alpha=\frac{\pi}{4}$ ，则 $\tan \alpha=1$＂与它的逆否命题：＂若 $\tan \alpha \neq 1$ ，则 $\alpha \neq \frac{\pi}{4}$＂它们是等价命题．同为真命题．

1－2－2 知识点 逻辑联结词（即＂且＂，＂或＂，＂非＂，用来联结两个命题）
不含逻辑联结词＂或＂，＂且＂，＂非＂的命题称为简单命题，由简单命题与逻辑联结词构成的命题是复合命题。

1．＂p 且 q＂可表示成符号＂$p \wedge q$＂（与交集的意义类似）
真假判断方法：只有当 p 和 q 这两个命题同为真时才为真，其余都为假。
2．＂p 或 q＂可表示成符号＂$p \vee q$＂。
真假判断方法：只有当 p 和 q 这两个命题同为假时才为假，其余都为真．
3．＂p 的否定命题＂可表示成符号＂$\neg p$＂。
真假判断方法：若＂p＂真，则＂$\neg p$＂假；若＂p＂假，则＂$\neg p$＂真．
（此处注意：命题 p 的＂否定命题＂，只否定命题 p 的结论，而条件不变，与命题 p 的＂否命题＂不同；p 的＂否命题＂，是把 p 的条件和结论分别否定．这是两个不同的概念．）

4．真值表：

p	q	p 或 q	p 且 q	非 p
真	真	真	真	假
真	假	真	假	假
假	真	真	假	真
假	假	假	假	真

例1 判断下列命题的真假：
$p: 2$ 是 6 的约数．
$q: 2$ 是 8 的约数．
p 或 $q: 2$ 是 6 或 8 的约数．
p 且 $q: 2$ 是 6 的约数且 2 是 8 的约数．
非 $p: 2$ 不是 6 的约数．
【详解】 $p: 2$ 是 6 的约数．（真）
$q: 2$ 是 8 的约数．（真）
p 或 $q: 2$ 是 6 或 8 的约数．（真）
p 且 $q: 2$ 是 6 的约数且 2 是 8 的约数．（真）
非 $p: 2$ 不是 6 的约数。（假）
【点评】注意理解并熟记真值表。注意区分否命题与命题的否定．
例如，假设命题 p 是：＂若一个数是自然数，则它是整数＂，那么命题 p 的否命题是：＂若一个数不是自然数，则它不是整数＂；命题 p 的否定命题是：＂若一个数是自然数，则它不是整数＂．

1－2－3 考点 充分条件和必要条件

1．充分条件和必要条件：

一般地，$p \Rightarrow q$ ，我们就说 p 是 q 的充分条件，q 是 p 的必要条件．

2．充要条件：

一般地，$p \Leftrightarrow q$ ，我们就说 p 是 q 的充分必要条件，简称 p 是 q 的充要条件；q 也是 p 的充要条件。
＂p 是 q 的充分不必要条件＂表示成＂$p \not \approx q$＂（即 p 能够推出 q ，但 q 不能推出 p ）；
＂p 是 q 的必要不充分条件＂表示成＂$p \nsim q$＂（即 p 不能推出 q ，但 q 能够推出 p ）．

3．如何判断充分条件和必要条件

充分条件和必要条件的判断，除应用定义外还需掌握如下方法
（1）等价转化法判断充分条件，必要条件
（1）p 是 q 的充分不必要条件 $\Leftrightarrow \neg q$ 是 $\neg p$ 的充分不必要条件；
（2）p 是 q 的必要不充分条件 $\Leftrightarrow \neg q$ 是 $\neg p$ 的必要不充分条件；
（3）p 是 q 的充要条件 $\Leftrightarrow \neg q$ 是 $\neg p$ 的充要条件；
（4）p 是 q 的既不充分也不必要条件 $\Leftrightarrow \neg q$ 是 $\neg p$ 的既不充分也不必要条件．
（2）集合判断法判断充分条件，必要条件
若 p 以集合 A 的形式出现，q 以集合 B 的形式出现，即 $p: A=\{x \mid p(x)\}, q: B=$ $\{x \mid q(x)\}$ ，则：
（1）若 $A \subseteq B$ ，则 p 是 q 的充分条件；
（2）若 $B \subseteq A$ ，则 p 是 q 的必要条件；
（3）若 $A \varsubsetneqq B$ ，则 p 是 q 的充分不必要条件；
（4）若 $B \varsubsetneqq A$ ，则 p 是 q 的必要不充分条件；
（5）若 $A=B$ ，则 p 是 q 的充要条件；
（6）若 $A \varsubsetneqq B$ 且 $B \varsubsetneqq A$ ，则 p 是 q 的既不充分也不必要条件．

例1 若 $x \in \mathbf{R}$ ，则＂$x>1$＂是＂$x>-1$＂的（ ）
A．充分但不必要条件
B．必要但不充分条件
C．充要条件
D．既不充分又不必要条件

【详解】由题，只要 x 是范围 $x>1$ 里面的数，那么 x 一定满足 $x>-1$ ；反之，不成立．所以 $x>1 \rightleftharpoons x>-1$ ，即＂$x>1$＂是＂$x>-1$＂的充分但不必要条件．故选 A．

【点评】考查对充分必要条件的理解。
例2（2014 军考真题）＂$x_{1}>2$ 且 $x_{2}>2$＂是＂$x_{1}+x_{2}>4$ 且 $x_{1} x_{2}>4$＂的（）
A．充分不必要条件
B．必要不充分条件
C．充要条件
D．既不充分也不必要

【详解】充分性显然成立，若 $x_{1}=10, x_{2}=\frac{1}{2}$ ，满足 $x_{1}+x_{2}>4$ 且 $x_{1} x_{2}>4$ ，但不满足 $x_{1}>2$且 $x_{2}>2$ ，故必要性不成立．故选 A．

【点评】考查命题的充分性和必要性的判断．
例3 设命题甲：$-1 \leqslant x \leqslant 1$ ，命题乙：$|x| \leqslant 2$ ，则甲是乙的（ ）
A．充分但不必要条件
B．必要但不充分条件
C．充要条件
D．既不充分又不必要条件

【详解】先化简命题乙．$\because|x| \leqslant 2, \therefore-2 \leqslant x \leqslant 2$ ．可知，只要 x 满足 $-1 \leqslant x \leqslant 1$ ，则 x 必满足 $-2 \leqslant x \leqslant 2$ ；反之不成立．即 $-1 \leqslant x \leqslant 1 \rightleftharpoons-2 \leqslant x \leqslant 2$ ，则甲是乙的充分不必要条件．故选 A．

【点评】考查对充分必要条件的理解．

例4（2009 军考真题）条件 $p:|x|=x$ ，条件 $q: x^{2} \geqslant-x$ ，则 p 是 q 的（）
A．充分不必要条件
B．必要不充分
C．充要条件
D．既不充分也不必要条件

【详解】 $p:|x|=x \Leftrightarrow x \geqslant 0 ; q: x^{2} \geqslant-x \Leftrightarrow x \geqslant 0$ 或 $x \leqslant-1, \therefore p \Rightarrow q, q \nRightarrow p$ ．故选 A．
【点评】本题涉及不等式的化简，重点考查充要条件的判定．
例5（2008 军考真题）设 $\alpha, \beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ ，那么＂$\alpha<\beta$＂是＂ $\tan \alpha<\tan \beta$＂的（ ）
A．充分而不必要条件
B．必要而不充分条件
C．充分必要条件
D．既不充分也不必要条件

【详解】函数 $y=\tan x$ 在区间 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上是增函数，$\alpha<\beta \Leftrightarrow \tan \alpha<\tan \beta$ ．故选 C．
【点评】考查正切曲线的单调性以及充要条件的判定．
例6（2011 军考真题）＂ $\sin \alpha=\frac{1}{2}$＂是＂ $\cos 2 \alpha=\frac{1}{2}$＂的（ ）
A．充分而不必要条件
B．必要而不充分条件
C．充要条件
D．既不充分也不必要条件

【详解】 $\cos 2 \alpha=\frac{1}{2} \Leftrightarrow 1-2 \sin ^{2} \alpha=\frac{1}{2} \Leftrightarrow \sin \alpha= \pm \frac{1}{2}$ ，而 $\sin \alpha=\frac{1}{2} \Rightarrow \sin \alpha= \pm \frac{1}{2}$ ，但 $\sin \alpha=\frac{1}{2} \nLeftarrow \sin \alpha= \pm \frac{1}{2}$ ．故选 A．

【点评】考查充要条件的判定及二倍角余弦公式．
例7（2010 军考真题）＂$a<0$＂是＂方程 $a x^{2}+2 x+1=0$ 至少有一个负根＂的（ ）
A．必要不充分条件
B．充分不必要条件
C．充分必要条件
D．既不充分也不必要条件

【详解】 $a<0$ 时，用根与系数的关系可知方程 $a x^{2}+2 x+1=0$ 有一个负根，一个正根．$a=0$时，方程 $a x^{2}+2 x+1=0$ 有一个负根 $x=-\frac{1}{2}$ ．

这就表明 $a<0$ 是方程 $a x^{2}+2 x+1=0$ 有一个负根的充分非必要条件．故选 B．
【点评】要注意考虑特殊情况，这是做选择题的首选方法，本题也可分析出方程至少有一个负根的充要条件，但是作为选择题不是最好的方法．

例8（2012 军考真题）设 $a, ~ b$ 都是实数，则＂ $\lg \left(a^{2}+1\right)<\lg \left(b^{2}+1\right)$＂是＂$a<b$＂的（ ）
A．充要条件
B．充分不必要条件
C．必要不充分条件
D．既不充分也不必要条件

【详解】先化简 $\lg \left(a^{2}+1\right)<\lg \left(b^{2}+1\right) \Leftrightarrow a^{2}+1<b^{2}+1 \Leftrightarrow|a|<|b|$ ．又 $|a|<|b|$ 不能推出 $a<b$ ， $a<b$ 不能推出 $|a|<|b|$ ．故选 D．

【点评】本题涉及对数的运算，重点考查充要条件．
例 9 （2015 军考真题）＂$k=h$＂是＂直线 $y=x+2$ 与圆 $(x-k)^{2}+(y-h)^{2}=2$ 相切＂的（ ）
A．充分不必要条件
B．必要不充分条件
C．充要条件
D．既不充分也不必要条件

【详解】直线与圆 $(x-k)^{2}+(y-h)^{2}=2$ 相切 $\Leftrightarrow \frac{|k-h+2|}{\sqrt{2}}=\sqrt{2} \Leftrightarrow k=h$ 或 $k=h-4, \therefore " k=h$＂是＂$k=h$ 或 $k=h-4$＂的充分不必要条件．故选 A

【点评】考查充要条件的判定。
例10（2013 军考真题）已知 $A \cdot B \cdot C \neq 0$ ，则＂$A, ~ B, ~ C$ 三者符号相同＂是＂方程 $A x^{2}+B y^{2}=C$ 表示椭圆＂的（ ）
A．充要条件
B．充分不必要条件
C．必要不充分条件
D．既不充分也不必要条件

【详解】＂方程 $A x^{2}+B y^{2}=C$ 表示椭圆＂$\Leftrightarrow A, ~ B, ~ C$ 三者符号相同，且 $A \neq B$＂，所以＂$A, ~ B, ~ C$ 三者符号相同＂$\Leftarrow "$ 方程 $A x^{2}+B y^{2}=C$ 表示椭圆＂，
而＂$A, ~ B, ~ C$ 三者符号相同＂\nRightarrow＂方程 $A x^{2}+B y^{2}=C$ 表示椭圆＂，
故＂$A, ~ B, ~ C$ 三者符号相同＂是＂方程 $A x^{2}+B y^{2}=C$ 表示椭圆＂的必要不充分条件．
故选 C．
【点评】考查命题充分性必要性的判定，涉及椭圆的标准方程．
例11（2019 军考真题）设 $\theta \in[0,2 \pi]$ ，则＂$\left|\theta-\frac{\pi}{12}\right|<\frac{\pi}{12}$＂是＂ $\sin \theta<\frac{1}{2}$＂的（）
A．充分而不必要条件
B．必要而不充分条件
C．充要条件
D．既不充分也不必要条件

【详解】由 $\left|\theta-\frac{\pi}{12}\right|<\frac{\pi}{12}$ 得 $0<\theta<\frac{\pi}{6} \Rightarrow \sin \theta<\frac{1}{2}$ ，但 $\sin \theta<\frac{1}{2}$ 并不能推出 $0<\theta<\frac{\pi}{6}$ ，即 $\sin \theta<\frac{1}{2}$ 不能推出 $\left|\theta-\frac{\pi}{12}\right|<\frac{\pi}{12}$ ．故选 A．

例12（2020 军考真题）＂ $\sin \alpha=\cos \alpha$＂是＂ $\cos 2 \alpha=0$＂的（ ）
A．充分不必要条件
B．必要不充分条件
C．充分必要条件
D．既不充分也不必要条件

【详解】当 $\sin \alpha=\cos \alpha$ 成立时， $\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=(\cos \alpha-\sin \alpha)(\cos \alpha+\sin \alpha)=0$ 成立；反之则不成立．故选 A．

例 13 （2021 军考真题）对于实数 x, y ，命题 $p: x+y=3$ ，命题 $q: x=1$ 且 $y=2$ ，则 p是 q 的（ ）
A．充要条件
B．充分不必要条件
C．必要不充分条件
D．既不充分也不必要条件

【详解】因为命题 q 成立则 p 一定成立，反之则不然，所以 p 是 q 的必要不充分条件．故选 C．

1－2－4 知识点 全称命题和特称命题

1．全称命题：

在语句中含有短语＂所有＂，＂每一个＂，＂任何一个＂，＂任意一个＂＂一切＂等都是在指定范围内，表示整体或全部的含义，这样的词叫作全称量词．

含有全称量词的命题叫作全称命题。
例如，（1）所有有中国国籍的人都是黄种人；
（2）对所有的 $x \in R, x>3$ ；
（3）对任意一个 $x \in Z, 2 x+1$ 是整数．

2．特称命题：

短语＂有些＂，＂至少有一个＂，＂有一个＂，＂存在＂等都有表示个别或一部分的含义，这样的词叫作存在量词。

含有存在量词的命题叫作特称命题。
全称量词的否定是存在量词．存在量词的否定是全称量词．
例如，（1）有一个素数不是奇数；
（2）有的平行四边形是菱形．

例1 写出下列命题的否定，并判断其真假：
（1）p ：不论 m 取何实数，方程 $x^{2}+m x-1=0$ 必有实数根；
（2）p ：菱形的对角线互相垂直；
（3）p ：三角形的内角和为 180° ．
【详解】（1）这一命题可表述为 p ：对任意的实数 m ，方程 $x^{2}+m x-1=0$ 必有实数根，其否定为 $\neg p$ ：存在一个实数 m ，使方程 $x^{2}+m x-1=0$ 没有实数根．因为该方程的判别式 $\Delta=m^{2}+4>0$恒成立，故 $\neg p$ 为假命题。
（2）$\neg p$ ：有的菱形对角线不垂直．
显然 $\neg p$ 为假命题。
（3）$\neg p$ ：三角形的内角和不全为 180° 。（或存在一个三角形，其内角和不等于 180° ）显然 $\neg p$ 为假命题。

【点评】考查全称量词的否定是存在量词．全称命题的否定是特称命题．
例2 写出下列命题的否定，并判断其真假．
（1）p ：有些三角形的三条边相等；
（2）p ：存在一个四边形不是平行四边形；
（3）$p: \exists x_{0} \in \mathbf{R}, 3^{x_{0}}<0$ ．
【详解】（1）$\neg p$ ：所有三角形的三条边不全相等。
显然 $\neg p$ 为假命题。
（2）$\neg p$ ：所有的四边形都是平行四边形．
$\neg p$ 是假命题．
（3）$\neg p: \forall x \in \mathbf{R}, 3^{x} \geqslant 0$ ．
$\neg p$ 为真命题．
【点评】考查存在量词的否定是全称量词．特称命题的否定是全称命题．
【注解】 \exists 表示存在，\forall 表示任意。
例3 命题＂对任意的 $x \in \mathbf{R}, x^{3}-x^{2}+1 \leqslant 0$＂的否定是（ ）
A．不存在 $x \in \mathbf{R}, x^{3}-x^{2}+1 \leqslant 0$
B．存在 $x \in \mathbf{R}, x^{3}-x^{2}+1 \leqslant 0$
C．存在 $x \in \mathbf{R}, x^{3}-x^{2}+1>0$
D．对任意的 $x \in \mathbf{R}, x^{3}-x^{2}+1>0$

【详解】注意两点：（1）全称命题变为特称命题；（2）只对结论进行否定．故选 C．

『基础突破 \star 训练题组】

1．已知集合 $A=\{1,2,3\}, B=\{3,4,5\}$ ，那么集合 $A \cup B=()$
A．$\{3\}$
B．$\{1,2,3,4,5\}$
C．$\{1,2,4,5\}$
D．\varnothing

2．已知全集 $I=\{1,2,3,4,5,6\}, A=\{1,2,3,4\}, B=\{3,4,5,6\}$ ，那么 $C_{I}(A \cap B)$ 等于（ ）
A．$\{3,4\}$
B．$\{1,2,5,6\}$
C．$\{1,2,3,4,5,6\}$
D．\varnothing

3．已知全集 $U=\{0,1,2,3,4\}$ ，集合 $A=\{1,2,3\}, B=\{2,4\}$ ，则 $\left(C_{U} A\right) \cup B$ 为（ ）
A．$\{1,2,4\}$
B．$\{2,3,4\}$
C．$\{0,2,4\}$
D．$\{0,2,3,4\}$

4．已知全集为 \mathbf{R} ，集合 $A=\{x \mid x \geqslant 1\}$ ，那么集合 $\complement_{\mathbf{R}} A$ 等于（ ）
A．$\{x \mid x>1\}$
B．$\{x \mid x>-1\}$
C．$\{x \mid x<1\}$
D．$\{x \mid x<-1\}$

5．已知集合 $A=\{1,2,3,4,5\}, B=\{(x, y) \mid x \in A, y \in A, x-y \in A\}$ ，则 B 中所含元素的个数为（ ）
A． 3
B． 6
C． 8
D． 10

6．已知全集 $U=\mathbf{R}$ ，集合 $A=\{x \mid-2 \leqslant x \leqslant 3\}, B=\{x \mid x<-1$ 或 $x>4\}$ ，那么集合 $A \cap\left(\complement_{U} B\right)$ 等于（ ）
A．$\{x \mid-2 \leqslant x<4\}$
B．$\{x \mid x \leqslant 3$ 或 $x \geqslant 4\}$
C．$\{x \mid-2 \leqslant x<-1\}$
D．$\{x \mid-1 \leqslant x \leqslant 3\}$

7．若 $a \in \mathbf{R}$ ，则＂$a=1$＂是＂$|a|=1$＂的（ ）
A．充分而不必要条件
B．必要而不充分条件
C．充要条件
C．既不充分又不必要条件

8．设 m, n 是整数，则＂m, n 均为偶数＂是＂$m+n$ 是偶数＂的（）
A．充分而不必要条件
B．必要而不充分条件
C．充要条件
D．既不充分也不必要条件

9．若 $a \in \mathbf{R}$ ，则＂$a=2$＂是＂$(a-1)(a-2)=0$＂的（
A．充分而不必要条件
B．必要而不充分条件
C．充要条件
C．既不充分又不必要条件

10．设集合 $M=\{1,2\}, ~ N=\left\{a^{2}\right\}$ ，则＂$a=1$＂是＂$N \subseteq M$＂的（ ）
A．充分不必要条件
B．必要不充分条件
C．充分必要条件
D．既不充。分又不必要条件

『能力突破 \star 训练题组】

1．设全集 $U=\{a, b, c, d\}$ ，集合 $A=\{a, b\}, B=\{b, c, d\}$ ，则 $\left(C_{U} A\right) \cup\left(C_{U} B\right)=(\quad)$
A．$\{a, b\}$
B．$\{a\}$
C．$\{a, c, d\}$
D．$\{b, c\}$

2．若集合 $A=\{-1,1\}, B=\{0,2\}$ ，则集合 $C=\{z \mid z=x+y, x \in A, y \in B\}$ 中的元素的个数为
A． 5
B． 4
C． 3
D． 2

3．已知全集 $U=\mathbf{R}$ ，集合 $M=\{x \| x-1 \mid \leqslant 2\}$ ，则 $\complement_{U} M=$（ ）
A．$\{x \mid-1<x<3\}$
B．$\{x \mid-1 \leqslant x \leqslant 3\}$
C．$\{x \mid x<-1$ 或 $x>3\}$
D．$\{x \mid x \leqslant-1$ 或 $x \geqslant 3\}$

4．已知集合 $A=\{x \| x \mid \leqslant 2, x \in \mathbf{R}\}, B=\{x \mid \sqrt{x} \leqslant 4, x \in \mathbf{Z}\}$ ，则 $A \cap B=$（ ）
A．$(0,2)$
B．$[0,2]$
C．$(0,2]$
D．$\{0,1,2\}$

5．已知集合 $A=\left\{x \mid x^{2}-2 x>0\right\}, B=\{x \mid-\sqrt{5}<x<\sqrt{5}\}$ ，则（）
A．$A \cap B=\varnothing$
B．$A \cup B=\mathbf{R}$
C．$B \subseteq A$
D．$A \subseteq B$

6．已知集合 $P=\left\{x \mid x^{2} \leqslant 1\right\}, M=\{a\}$ 。若 $P \cup M=P$ ，则 a 的取值范围是（ ）
A．$(-\infty,-1]$
B．$[1,+\infty)$
C．$[-1,1]$
D．$(-\infty,-1] \cup[1,+\infty)$

7．设集合 $A=\{1,2,3,4,5,6\}, B=\{4,5,6,7\}$ ，则满足 $S \subseteq A$ 且 $S \cap B \neq \varnothing$ 的集合 S 的个数为（ ）
A． 57
B． 56
C． 49
D． 8

8．若集合 $A=\{x \| x \mid \leqslant 1\}, B=\left\{y \mid y=x^{2}, x \in \mathbf{R}\right\}$ ，则 $A \cap B=$（）
A．$\{x \mid-1 \leqslant x \leqslant 1\}$
B．$\{x \mid x \geqslant 0\}$
C．$\{x \mid 0 \leqslant x \leqslant 1\}$
D．\varnothing

9．＂｜$x-1 \mid<2$ 成立＂是＂$x(x-3)<0$ 成立＂的（ ）
A．充分不必要条件
B．必要不充分条件
C．充分必要条件
D．既不充分也不必要条件

10．若非空集合 A, B, C 满足 $A \cup B=C$ ，且 B 不是 A 的子集，则（）
A．＂$x \in C$＂是＂$x \in A$＂的充分条件但不是必要条件
B．＂$x \in C$＂是＂$x \in A$＂的必要条件但不是充分条件
C．＂$x \in C$＂是＂$x \in A$＂的充要条件
D．＂$x \in C$＂既不是＂$x \in A$＂的充分条件也不是＂$x \in A$＂必要条件
11．设 $x, y \in \mathbf{R}$ 则＂$x \geqslant 2$ 且 $y \geqslant 2$＂是＂$x^{2}+y^{2} \geqslant 4$＂的（ ）
A．充分而不必要条件
B．必要而不充分条件
C．充分必要条件
D．即不充分也不必要条件

12．已知 a, b 是实数，则＂$a>0$ 且 $b>0$＂是＂$a+b>0$ 且 $a b>0$＂的（）
A．充分而不必要条件
B．必要而不充分条件
C．充分必要条件
D．既不充分也不必要条件

13．（2018 军考真题）设 a, b 为正实数，则＂$a>b>1$＂是＂ $\log _{2} a>\log _{2} b>0$＂的（ ）
A．充要条件
B．充分不必要条件
C．必要不充分条件
D．既不充分也不必要条件

『基础突破大训练题组】答案

1．【答案】 B

【详解】由题，元素1，2，3，4，5是集合 A 或集合 B 里面的元素，则 $A \cup B=\{1,2,3,4,5\}$ ．
【点评】考查集合运算中的并集．
2．【答案】 B
【详解】 $A \cap B=\{3,4\}, C_{I}(A \cap B)=\{1,2,5,6\}$ ．
【点评】考查集合运算中的交集，补集．
3．【答案】 C
【详解】 $\complement_{U A}=\{0,4\}, B=\{2,4\}, \therefore\left(\complement_{U} A\right) \cup B=\{0,2,4\}$ ，故选 C．
【点评】考查集合运算中的并集，补集．
4．【答案】C
【详解】由题，相对于全集 $\mathbf{R}, ~ A$ 的补集为 $\{x \mid x<1\}$ ．
【点评】考查集合运算中的全集与补集．
5．【答案】D
【详解】 $x=5, y=1,2,3,4 ; x=4, y=1,2,3 ; x=3, y=1,2 ; x=2, y=1$ ，共 10 个．
【点评】考查集合的描述法表示．
6．【答案】 D
【详解】 $\complement_{U} B=\{x \mid-1 \leqslant x \leqslant 4\}$ ，于是 $A \cap\left(\complement_{U} B\right)=\{x \mid-1 \leqslant x \leqslant 3\}$ ．
【点评】考查集合的基本运算．注意运算顺序．
7．【答案】A
【详解】当 $a=1$ 时，$|a|=1$ 成立，反过来，若 $|a|=1$ 时，$a= \pm 1$ ，即 $a=1$ 不一定成立．
【点评】考查充分，必要条件的判定．
8．【答案】 A
【详解】两个偶数相加得偶数，但两个奇数的和也是偶数，前能推后，后不能推前，充分不必要。
【点评】考查充要条件的判定．关键是弄清充分条件与必要条件的区别和联系．
9．【答案】A
【详解】由 $a=2$ 可得 $(a-1)(a-2)=0$ 成立，反之不一定成立．
【点评】考查充分，必要条件的判定．
10．【答案】 A
【详解】当 $a=1$ 时，$N=\{1\} \subseteq M$ ，满足充分性；而当 $N=\left\{a^{2}\right\} \subseteq M$ 时，
可得 $a=1$ 或 $a=-1$ 或 $a=\sqrt{2}$ 或 $a=-\sqrt{2}$ ，不满足必要性，故选 A．
【点评】本小题主要考查集合间的基本关系以及充分，必要条件的判定．

『能力突破大训练题组】答案

1．【答案】C
【详解】 $\because\left(\complement_{u} A\right)=\{c, d\},\left(\complement_{u} B\right)=\{a\}, \therefore\left(\complement_{u} A\right) \cup\left(\complement_{u} B\right)=\{a, c, d\}$ ．
【点评】考查集合运算中的并集和补集．
2．【答案】 C

【详解】容易看出 $x+y$ 只能取 $-1,1,3$ 三个数值，故共有三个元素．

3．【答案】C

【详解】因为集合 $M=\{x| | x-1 \mid \leqslant 2\}=\{x \mid-1 \leqslant x \leqslant 3\}$ ，全集 $U=\mathbf{R}$ ，所以 $\complement_{U} M=\{x \mid x<-1$ 或 $x>3\}$ ．
【点评】考查集合的补集运算。
4．【答案】D
【详解】由已知得 $A=[-2,2], B=\{0,1,2,3,4, \cdots 16\}$ 所以 $A \cap B=\{0,1,2\}$ ．
【点评】考查集合的交集运算．
5．【答案】 B
【详解】 $A=\left\{x \mid x^{2}-2 x>0\right\}=\{x \mid x<0$ 或 $x>2\}$ ，如下图所示．

【点评】本题结合一元二次不等式考查集合运算。
6．【答案】C
【详解】 $P=\left\{x \mid x^{2} \leqslant 1\right\}=\{x \mid-1 \leqslant x \leqslant 1\}, \quad P \cup M=P \Rightarrow a \in[-1,1]$ ．
【点评】考查集合与集合间的关系．
7．【答案】B
【详解】集合 A 的所有子集共有 $2^{6}=64$ 个，其中不含 $4,5,6$ 的子集有 $2^{3}=8$ 个，所以集合 S共有 56 个。
【点评】考查集合间的基本关系（子集问题）以及集合的基本运算。
8．【答案】C
【详解】因为 $A=[-1,1], B=[0,+\infty)$ ，所以 $A \cap B=\{x \mid 0 \leqslant x \leqslant 1\}$ ．
9．【答案】 B
【详解】 $|x-1|<2 \Leftrightarrow-2<x-1<2 \Leftrightarrow-1<x<3 ; \quad x(x-3)<0 \Leftrightarrow 0<x<3$
后者能推出前者，前者不能推出后者，必要不充分条件．
10．【答案】B
【详解】因为 $A \cup B=C$ ，所以当 $x \in A$ 时必有 $x \in C$ ，但是 B 不是 A 的子集，所以当 $x \in B$ 时，有 $x \in C$ 但 $x \notin A$ 。
【点评】关键弄清充分条件与必要条件的区别和联系．
11．【答案】 A
【详解】由＂$x \geqslant 2$ 且 $y \geqslant 2$＂可得＂$x^{2}+y^{2} \geqslant 4$＂，但反之不成立，故选 A．
【点评】关键弄清充分条件与必要条件的区别和联系。
12．【答案】 C
【详解】＂$a>0$ 且 $b>0$＂可以推出＂$a+b>0$ 且 $a b>0$＂，反之也成立，故选 C．
【点评】关键弄清充分条件与必要条件的区别和联系．
13．【答案】A
【详解】由 $a>b>1$ 可以推出 $\log _{2} a>\log _{2} b>0$ ，反过来由 $\log _{2} a>\log _{2} b>0$ 可以推出 $a>b>1$ ，所以是充要条件．故选 A．

第二章 函 数

知 识 提 纲	第一节 函数的基本概念	01 知识点 函数的概念
		02 知识点 函数的三要素
	第二节 复习一次函数，反比例函数，二次函数	03 知识点 一次函数
		04 知识点反比例函数
		05 考点 二次函数
	第三节 指数函数	06 考点指数函数的图像和性质
	第四节 对数函数	07 考点 对数函数的图像和性质
	第五节 幂函数	08 考点幂函数的图像和性质
		09 考点 函数的定义域
		10 考点函数的值域
		11 考点 函数的奇偶性
	第节 而数的性质及应用	12 考点 函数的单调性
		13 考点 函数的周期性
		14 考点反函数
		15 知识点 函数的图象变换
		16 考点 函数的零点

第一节 函数的基本概念

2－1－1 知识点 函数的概念

1．函数的定义：设 $A, ~ B$ 是非空的数集，如果按照某个确定的对应关系 f ，使对于集合 A中的任意一个数 x ，在集合 B 中都有唯一确定的数 y 和它对应，那么就称 $f: A \rightarrow B$ 为从集合 A到集合 B 的一个函数。记作 $y=f(x), x \in A$ 。

其中 x 叫做自变量，x 的取值范围 A 叫做函数的定义域；与 x 的值相对应的 y 值叫做函数值，函数值的集合叫做函数的值域。
（1）＂$y=f(x) "$ 是函数符号，可以用任意的字母表示，如＂$y=g(x)$＂；
（2）函数符号＂$y=f(x)$＂中的 $f(x)$ 表示与 x 对应的函数值，一个数，而不是 f 乘 x, f 表示对应法则，不同的函数其含义不一样；
（3）构成函数的三要素：定义域，对应关系和值域；
（4）函数的定义域通常由问题的实际背景确定，如果只给出解析式 $y=f(x)$ ，而没有指明它的定义域，则函数的定义域即是指能使这个式子有意义的实数的集合；
（5）函数的定义域，值域要写成集合或区间的形式；
（6）$y=f(x), x \in A$ 是函数的完整表示形式．当使式子 $f(x)$ 有意义的实数 x 的集合恰好为 A 时，可以省略 $x \in A$ ，只写 $y=f(x)$ 就可以了；
（7）函数的值域，即函数值的集合 $\{f(x) \mid x \in A\} \subseteq B$ ；
（8）两个函数相同当且仅当它们的定义域和对应关系完全一致，而与表示自变量和函数值的字母无关．即只有当函数的三要素完全相同时，两个函数才能称为同一函数．
（9）$f(x)$ 不一定是解析式，有时可能是＂列表＂，＂图象＂。
（10）$f(x)$ 与 $f(a)$ 是不同的，前者为变数，后者为常数。

例1 判断下列对应关系是否是函数：
（1）$y=x^{2}(x \in \mathbf{R}), y$ 是 x 的函数吗？
（2）$y^{2}=x(x \geqslant 0), ~ y$ 是 x 的函数吗？
【详解】（1）是；（2）不是，因为 x 和 y 的对应是一对多的形式．
【点评】考查函数的概念，自变量 x 和函数 y 的对应形式可以是一对一，也可以是多对一，但不能是一对多。

2．函数的表示方法

表示函数的方法，常用的有解析法，列表法和图象法三种．
（1）解析法：就是把两个变量的函数关系，用一个等式表示，这个等式叫做函数的解析表达式，简称解析式．

例如，$S=60 t^{2}(t \in R), S=25 x^{3}-1(x \leqslant 1), y=\sqrt{x-2}(x \geqslant 2)$ 等等都是用解析式表示函数关系的。

优点：一是简明，全面地概括了变量间的关系；二是可以通过解析式求出任意一个自变量的值所对应的函数值．中学阶段研究的函数主要是用解析法表示的函数．

例如，某种笔记本每个 5 元，买 $x \in\{1,2,3,4\}$ 个笔记本的钱数记为 y（元），试用解析法表示 x 为自变量的函数 y 的解析表达式。

解：这个函数的定义域集合是 $\{1,2,3,4\}$ ，函数的解析式为 $y=5 x, x \in\{1,2,3,4\}$ ．
（2）列表法：就是列出表格来表示两个变量的函数关系。
例如，学生的身高 单位：厘米

学号 x	1	2	3	4	5	6	7	8	9
身高 y	125	135	140	156	138	172	167	158	169

数学用表中的平方表，平方根表，三角函数表，银行里的利息表，公共汽车上的票价表，列车时刻表等等都是用列表法来表示函数关系的。

优点：不需要计算就可以直接看出与自变量的值相对应的函数值．
例如，某种笔记本每个 5 元，买 $x \in\{1,2,3,4\}$ 个笔记本的钱数记为 y（元），试用列表法表示 x 为自变量的函数 y 的对应关系。

单位：元				
x	1	2	3	4
y	5	10	15	20

（3）图象法：就是用函数图象表示两个变量之间的关系．
例如，气象台应用自动记录器描绘温度随时间变化的曲线，我国人口出生率变化的曲线，工厂的生产图象，股市走向图等都是用图象法表示函数关系的。

优点：能直观形象地表示出自变量的变化，相应的函数值变化的趋势，这样使得我们可以通过图象来研究函数的某些性质。

例如，某种笔记本每个 5 元，买 $x \in\{1,2,3,4\}$ 个笔记本的钱数记为 y（元），试用图象法表示 x 为自变量的函数 y 的对应关系。

解：这个函数的定义域集合是 $\{1,2,3,4\}$ ，
它的图象由 4 个孤立点 $A(1,5), B(2,10), C(3,15), D(4,20)$ 组成，如图所示．

3．函数的图象定义：

对于函数 $y=f(x)$ ，在直角坐标系中，如果将自变量 的取值视为某一点的横坐标，把对应的唯一的函数值视为此点的纵坐标，那么这些点在平面上组成的图形就是此函数的图象，简称函数 $y=f(x)$ 的图象，即 $\{(x, y) \mid y=f(x), x \in A\}$ 。

一般来说，把一个任意的二维图形放在直角坐标系里面，然后任意作一条与 x 轴垂直的直线，如果这条直线与该图形最多只有一个交点（当然某些位置可以没有交点，但至少存在一条直线与图象有交点），那么，这个图形一定是对应某个函数的图形．

例2 判断下列图象是否对应着一个函数？

（1）

（2）

（3）

（4）

（5）

（6）

（7）

（8）

（9）

【详解】（1）（2）（3）（4）（5）（8）（9）是；（6）（7）否．

（1）

（2）

（3）

（4）

（5）

（6）

（7）

（8）

（9）

【点评】考查函数的图象定义．
例 3 画出函数 $f(x)=\frac{x}{|x|}$ 的图象。
【详解】先化简，转化成熟悉的形式 $(x \neq 0)$ ．
当 $x>0$ 时，$f(x)=\frac{x}{|x|}=\frac{x}{x}=1$ ；当 $x<0$ 时，$f(x)=\frac{x}{|x|}=\frac{x}{-x}=-1$ ．则图象如下

【点评】考查函数图象的画法，注意定义域．
例 4 画出下列函数图象的草图：（1）$y=\sqrt{x^{2}}$ ；（2）$y=(\sqrt{x})^{2}$ ；（3）$y=\frac{x^{2}}{x}$ ．

【详解】

（1）$y=\sqrt{x^{2}}=|x|$
当 $x \geqslant 0$ 时，$y=x$ ；当 $x<0$ 时，$y=-x$ ．图象如下

（2）首先确定 $y=(\sqrt{x})^{2}$ 的定义域为 $x \in[0,+\infty)$ ，则函数可化简为 $y=x, x \in[0,+\infty)$ ．图象如下

（3）首先确定 $y=\frac{x^{2}}{x}$ 的定义域为 $\{x \mid x \neq 0\}$ ，则
当 $x>0$ 时，$y=\frac{x \cdot x}{x}=x$ ；当 $x<0$ 时，$y=\frac{x \cdot x}{x}=x$ ．图象如下

【点评】这类题，需要先化简成熟悉的函数形式，才能画出对应图象．

4．理解：函数 $f(x)$ 的定义域和值域是什么？

（1）$f(x)$ 的定义域（集合形式）对应 $f(x)$ 的自变量 x 的取值范围 对应 $f(x)$ 图象上所有点的横坐标 x ．
（2）$f(x)$ 的值域（集合形式）$\stackrel{\text { 对应 }}{\longrightarrow} f(x)$ 的函数值 y 的取值范围 对应 $f(x)$ 图象上所有点的纵坐标 y ．

例 5 某函数 $f(x)$ 的图象如下图，请说出它的定义域和值域．

【详解】

由中图可知，$f(x)$ 的定义域是 $x \in[m, n]$ ；（考虑函数图象中位于最左边和最右边的点）
由右图可知，$f(x)$ 的值域是 $y \in[p, q]$ ．（考虑函数图象中位于最下边和最上边的点）
【点评】考查函数的定义域和值域在图象中的表示．

2－1－2 考点 函数的三要素

1．定义域：自变量的取值范围叫做函数的定义域．即函数图象上所有点的横坐标构成的集合．
2．值域：函数值的取值范围叫做函数的值域．即函数图象上所有点的纵坐标构成的集合．
3．对应法则：即由自变量求函数值的规则．一般地函数给出解析式．

例1 试判断以下各组函数是否表示同一函数？（三要素同时相同时，才是同一函数）
（1）$f(x)=\sqrt{x^{2}}, g(x)=\sqrt[3]{x^{3}}$ ．
【详解】否．定义域同，值域不同，对应法则不同，$f(x)=|x|, g(x)=x$ 。
（2）$f(x)=\frac{|x|}{x}, \quad g(x)= \begin{cases}1, & x \geqslant 0 \\ -1, & x<0\end{cases}$
【详解】否．值域相同，但定义域不同（ $f(x)$ 为 $\{x \mid x \neq 0\}, g(x)$ 为 $x \in \mathbf{R}$ ）。
（3）$f(x)=\sqrt{x} \sqrt{x+1}, g(x)=\sqrt{x^{2}+x}$ ；
【详解】定义域不同 $\left(f(x)\right.$ ，由 $\left\{\begin{array}{l}x \geqslant 0 \\ x+1 \geqslant 0\end{array}\right.$ 得 $x \geqslant 0 ; ~ g(x)$ ，由 $x^{2}+x \geqslant 0$ 得 $x \leqslant-1$ 或 $x \geqslant 0$ ．
（4）$f(x)=x^{2}-2 x-1, g(t)=t^{2}-2 t-1$ ．
【详解】是．三要素均相同（此处用 x 表示或用 t 表示，不影响对应法则）．
【点评】考查如何判断两个函数是否是同一函数（函数三要素均相同时，才是同一函数）．

2－1－3 考点 函数的对应律（对应法则）

1．显性函数的对应律．（2－1－3－1）
例 1 已知函数 $f(x)=2 x+1$ ，求 $f(3), f(1-x), f[f(x)]$ 的值．
【详解】 $f(3)=7, f(1-x)=2(1-x)+1=3-2 x, f[f(x)]=f(2 x+1)=2(2 x+1)+1=4 x+3$ ．
【点评】考查函数运算的意义。
2．隐性函数的对应律．（2－1－3－2）
例 2 已知 $f(x+1)=x^{2}+2 x-3$ ，求 $f(x)$ ．
【详解】（换元法）
令 $x+1=t$ ，则 $x=t-1$ ，代入函数式中，得 $f(t)=(t-1)^{2}+2(t-1)-3=t^{2}-4$ ．
$\therefore f(x)=x^{2}-4$ ．
【点评】考查求显性函数的方法，换元是基本方法．另外，函数的表示与所用字母无关．
例3（2005 军考真题）如果 $f(\sqrt{x}+1)=x+2 \sqrt{x}+2$ ，那么 $f(x)$ 等于（ ）
A．$x^{2}+1$
B．$x^{2}-1$
C．$x^{2}+2$
D．$x^{2}-2$

【详解】

$f(\sqrt{x}+1)=x+2 \sqrt{x}+2$ 令 $\sqrt{x}+1=t \Rightarrow \sqrt{x}=t-1, \quad \therefore f(t)=(t-1)^{2}+2(t-1)+2=t^{2}+1$ ，即 $f(x)=x^{2}+1$ ．故选 A．
【点评】考查换元法的运用．
例 4 已知 $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$ ，求 $f(x)$ ．
【详解】（配凑法） $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2$ ，令 $x+\frac{1}{x}=t$ ，得 $f(t)=t^{2}-2$所以 $f(x)=x^{2}-2$ ．
【点评】配凑法的本质也是换元法．
3．待定系数法求对应律．（2－1－3－3）
例 5 一次函数 $f(x)$ 满足 $f[f(x)]=9 x+8$ ，求 $f(x)$ ．
【详解】设 $f(x)=k x+b(k \neq 0)$ ，则有 $f[f(x)]=k f(x)+b=k(k x+b)+b=k^{2} x+k b+b$

